
Large-scale Graph Processing on Commodity Systems:
Understanding and Mitigating the Impact of Swapping
Alireza Haddadi

Dept. of IT, Uppsala University
Uppsala, Sweden

alireza.haddadi@it.uu.se

David Black-Schaffer
Dept. of IT, Uppsala University

Uppsala, Sweden
david.black-schaffer@it.uu.se

Chang Hyun Park
Dept. of IT, Uppsala University

Uppsala, Sweden
chang.hyun.park@it.uu.se

ABSTRACT
Graph workloads are critical in many areas. Unfortunately, graph
sizes have been increasing faster than DRAM capacity. As a re-
sult, large-scale graph processing necessarily falls back to virtual
memory paging, resulting in tremendous performance losses.

In this work we investigate how we can get the best possible
performance on commodity systems from graphs that cannot fit into
DRAM by understanding, and adjusting, how the virtual memory
system and the graph characteristics interact. To do so, we first
characterize the graph applications, system, and SSD behavior as a
function of howmuch of the graph fits in DRAM. From this analysis
we see that for multiple graph types, the system fails to fully utilize
the bandwidth of the SSDs due to a lack of parallel page-in requests.

We use this insight to motivate overcommitting CPU threads
for graph processing. This allows us to significantly increase the
number of parallel page-in requests for several graph types, and
recover much of the performance lost to paging. We show that over-
committing threads generally improves performance for various
algorithms and graph types. However, we identify one graph that
suffers from overcommitting threads, leading to the recommenda-
tion that overcommitting threads is generally good for performance,
but there may be certain graph inputs that suffer from overcommit-
ting threads.

CCS CONCEPTS
• Software and its engineering→ Virtual memory.

KEYWORDS
graph processing, virtual memory, swapping, SSD, commodity sys-
tem, thread overcommitting, characterization, operating system

ACM Reference Format:
Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park. 2023. Large-
scale Graph Processing on Commodity Systems: Understanding and Miti-
gating the Impact of Swapping. In The International Symposium on Memory
Systems (MEMSYS ’23), October 2–5, 2023, Alexandria, VA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3631882.3631884

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1644-7/23/10.
https://doi.org/10.1145/3631882.3631884

1 INTRODUCTION
Graph processing workloads are widely used in industry and in
supercomputing [17]. Today’s large-scale graphs are often enormous
in size (more than 100GBs [9]) and typically incur many irregular
memory accesses, making them challenging for the locality-based
caching and pattern-based prefetching of modern memory systems.
Unfortunately, DRAM capacity has not kept up with the growth of
graph sizes, meaning that large-scale graphs are impossible to keep
in DRAM during processing. Prior works have studied out-of-core
computing for graphs that do not fit in the DRAM. These approaches
require specialized algorithmic changes [13, 14, 19, 20, 23, 25, 26]
and/or specialized hardware to achieve out-of-core computing [16].

In this work, we investigate the processing of large-scale graphs
with commodity graph algorithm implementations running on com-
modity systems. In these commodity systems, large-scale graph pro-
cessing will necessarily result in accesses to the backing store due
to limited DRAM capacity, and, with commodity implementations,
these accesses will happen automatically through the operating
system’s virtual memory swapping. For our commodity system, we
use SSDs for virtual memory, which can provide enormous through-
put at low latency, but only if the operating system provides them
with sufficiently many parallel requests. This potential for virtual
memory performance through parallelism, combined with the di-
versity of the degree of parallelism in the graph workloads, frames
our areas of investigation: What are the bottlenecks in current com-
modity systems? And, what changes can we make to commodity
systems to improve performance?

To address these, we first explore the performance impact on
large-scale graph processing of paging by varying the portion of
the graph that fits into DRAM. As expected, performance can drop
dramatically with swapping (Section 4). To understand where the
inefficiency is coming from, we then take a closer look into the
kernel and the SSD swap device to identify bottlenecks. From the
investigation we make two observations: (1) cores are idling and (2)
the SSD swap device is operating below its performance limits. We
use these finding to propose the simple solution of overcommitting
graph processing threads to keep the cores busy and generate more
parallel swap requests to get closer to the performance limit of the
SSD (Section 5).

Overcommitting threads is able to provide up to 4.18x speedup
over the baseline. In another case, overcommitting threads is able
to improve the performance from 44.8% of the performance of the
baseline (with 100% memory available on system) to up to 76.93%,
improving performance by 32.13%). We also show that we are able
to better use the CPU and extract more I/O throughput from the
swap device by issuing more IO requests.

https://orcid.org/0009-0006-1804-4679
https://orcid.org/0000-0001-5375-4058
https://orcid.org/0000-0002-8250-8574
https://doi.org/10.1145/3631882.3631884
https://doi.org/10.1145/3631882.3631884


MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park

Finally, we conclude the paper and discuss future research based
on two interesting questions raised from our investigation (Sec-
tion 7). (1) Overcommitting threads can start to saturate a single
SSD device. Can adding more SSDs provide more swapping perfor-
mance? (2) If a system is equipped with a low-latency SSD drive,
will the kernel become the new bottleneck of handling page-faults?
Will this justify making radical changes to the kernel paging mech-
anism?

2 BACKGROUND
2.1 Graph processing
Graph processing extracts insights (such as neighbors, connectivity,
popularity, etc.) from data structures that encode the relationships
between data entities. Graphs consist of vertices (or nodes) and
edges between vertices to form a network of interconnected nodes.
An edge can be either directed or undirected, depending on the
meaning of the underlying data. In addition to vertices and edges,
graphs typically hold further information, such as property values
for each vertex, or the edge weights.

To store the graphs in memory, a common structure is the com-
pressed sparse row (CSR) format which can also be used together
with the compressed sparse column (CSC) format [4]. This format
consists of arrays of vertices and edges. Each entry in the vertices
array points to the portion of the edge array that contains the edges
connecting from that specific vertex, and each entry in the edge
array is the index of the vertex the edge connects to. In addition
to these two arrays, the graph algorithm and/or the graph itself
typically use additional arrays to hold per-vertex (e.g., page-rank
scores) or per-edge data (e.g., per edge weights).

Graph algorithms traverse the graph by following edge connec-
tions between vertices and edges through the arrays above. While
iterating through the vertices, and edges can be streaming ac-
cesses, the final access of using the edge to reference the target
vertex is often a random access. As memory systems are optimized
for locality and regular access patterns, these random accesses can
cause the processor to stall for up to 80% of the execution time [24].
When working with large-scale graphs that do not fit in the sys-
tem memory, these random accesses take even longer due to the
virtual memory swapping needed to bring them into DRAM from
the storage device.

2.2 Virtual memory paging is slow
Virtual memory enables the operating system to decouple the
userspace memory allocations (virtual addresses) from the physical
machine memory addresses (DRAM locations). This decoupling
allows the operating system to move around the userspace data to
different physical location, without causing any correctness issues
in the user program.

For workloads that do not fit into the DRAM, this decoupling
enables paging or swapping1, whereby parts of the userspace mem-
ory allocations are moved out of the main memory (DRAM) and
into secondary storage (swap devices such as SSDs). On access to
swapped out userspace data, the kernel fault handler is called and
the kernel finds out which page the user programwas attempting to

1In this work, we use the two terms, swapping and paging, interchangeably

access and pages in that address, makes a valid mapping in the page
table and returns the execution to the user program. From then on,
the user program continues to execute as if nothing happened.

However, handling a page-fault is enormously slower than a
direct DRAM access, with the latency dominated by reading the
page from the disk. Spinning magnetic hard disks took milliseconds
to read in data from the disk, while the latest NAND flash technol-
ogy in solid state drives (SSDs) take at least 45𝜇s [22]. Although
the latency has reduced two orders of magnitude from spinning
disks, SSDs still take much longer to access than DRAM. Thus, even
with faster SSDs, virtual memory swapping leads to significant
performance degradation while the program waits for the data to
be returned form the SSD.

2.3 SSDs are highly parallel
SSDs have impressive I/O throughput. For example, the SSD that is
used in this work can provide up to 7000 MB/s of sequential read
performance. However, as discussed above, the access latency of
random accesses is in the order of tens of microseconds, which is
orders of magnitude longer than DRAM access latencies. This can
cause significant slowdowns, as threads of execution that cause
the page-fault need to wait more than 45𝜇s for the page-fault to
resolve.

However, SSDs are capable of handling many independent re-
quests in parallel. While this does not reduce the latency of individ-
ual requests, it can, dramatically, increase the overall throughput
of requests handled if the application can provide sufficient paral-
lelism. The reason for this parallelism is due to the organization of
the SSDs, which consists internally of parallel channels, ways, and
dies, and SSD controllers that take care of queueing and re-ordering
accesses to maximize performance. Indeed, the NVMe protocol
specifically allows the SSD controller to process requests out-of-
order [18], and the controller picks out requests to issue to idle
parallel components to maximize throughput. As many large-scale
graphs also have significant parallelism in their accesses, in this
work we seek to see if we can adapt commodity systems and algo-
rithms to match the supported parallelism of the SSDs to improve
throughput and mitigate the performance loss of swapping.

3 METHODOLOGY
The commodity system used in our evaluations was an Intel i7-9700
processor (8 cores with 8 threads) with 128GB of DDR4 DRAM and
a Samsung 980 Pro 1TB NVMe SSD connected via the M.2 port, used
exclusively as a swap device. We used Ubuntu 20.04.6 with Linux
kernel version 6.3.0 and gcc 10.5 with the -O3 flag to compile the
graph benchmarks. Unless otherwise noted, we allowed OpenMP
use all the eight cores of the system to spawn 8 user threads.

The commodity implementation used in our evaluation was the
GAP benchmark suite[7]. We evaluate all six graph algorithms,
namely bc, bfs, cc, pr, sssp, and tc, provided in the suite, which
are based on the most commonly evaluated graph kernels [5]. For
each algorithm, we used the five input graphs offered by the GAP
benchmark suite: twitter, web, road, kron, and urand. The first
three input graphs are real-world graphs, and the latter two are
synthetic graphs that model a power-law network and a uniformly
random network, respectively. The input graphs are listed in Table 1



Large-scale Graph Processing on Commodity Systems: Understanding and Mitigating the Impact of Swapping MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

Table 1: The vertex and edge sizes of each graph input along
with the type of each graph input.

Graph Input Vertices Edges Graph type

twitter 61M 1,468M Power-law
web 50M 1,930M Power-law
road 23M 57M Mesh
kron 134M 2,111M Power-law
urand 134M 2,147M Uniform-random

0

10

20

30

40

BC BFS CC PR SSSP TC

DR
AM

 F
oo

tp
rin

t (
GB

) twitter web road kron urand

Figure 1: Memory footprint of each input graph when run-
ning a particular graph algorithm.

and their DRAM sizes in Figure 1. Prior to using the input graphs,
we converted the input graphs into the serialized form (i.e. .sg or
.wsg) to remove the graph building time from our experiments.

To control the amount of available DRAM for an application exe-
cution, we used the cgroups functionality to limit the total amount
of page-cache, anonymous, file-backed and shared mappings that
are consumed by a process. To understand the amount of mem-
ory needed by each benchmark, we first ran the algorithm/input
pair without any memory limit and measured the peak memory
usage of the program. These reference footprints are presented in
Figure 1. We use the reference footprints to allow us to scale each
benchmark’s available memory by the same ratio (percentage).

4 CHARACTERIZING THE IMPACT OF
SWAPPING

To evaluate the impact of large-scale graphs that do not fit into
DRAM we executed six graph algorithms with five graphs each
and reduced DRAM available to each benchmark. The resulting
slowdown is shown in Figure 2, normalized to the runtime where
the execution fits fully in DRAM (e.g., a value of 5 indicates a 5×
slowdown).

These results show devastating performance losses as the per-
centage of the working set that fits in DRAMdecreases. For example,
the road graph running the bc algorithm slowed down to 37×when
only 30% of the footprint fit in DRAM. Another interesting obser-
vation is that the tc algorithm does not suffer from performance
loss (except for the urand graph). As the urand graph is a synthetic
random graph, it would have the worst possible locality, suggesting
that the tc algorithm is largely insensitive to paging as long as the
graph has significant locality.

4.1 Kernel Behavior
Page-fault characterization:When the program attempts to ac-
cess data that is not in the DRAM the CPU triggers a page-fault,
which causes the OS to bring in the requested data from the swap
device. To understand how the system time is being spent during
execution with page faults, we used the perf record tool to sample
and record what each core was doing.

While sampling the activity of all cores, we found that the con-
ventional approach of using the HW performance counter cycles
did not account for the idle periods. We attempted to mitigate this
issue with the following two approaches, to no avail. First, we man-
ually disabled the intel_idle driver [21] to prevent cores from
entering low-power states, which could result in missing sampling
events. Second, we addressed another potential source of energy
optimization that could negatively affect the precision of our mea-
surements: the CPU governor [8]. For some modes, the governor
adjusts the frequency of cores based on the load of the core, in an
effort to conserve energy.

We found that changing the CPU governor did not help and that
disabling the idle driver (via setting the idle loop to poll) did increase
the number of samples, but did not result in the expected number
of samples as was measured by the kernel time accounting. This is
because the Intel architectural performance counter for cycles does
not count the halted cycles. Therefore, to sample the idle cycles
of the cores, we decided to use the kernel SW event cpu-clock to
sample both busy and idle cycles of each core.

We show a breakdown of the execution of the bfs algorithm
processing the web graph with 30% of the memory footprint avail-
able as DRAM in Figure 3. The breakdown shows that of the full
execution time (bottom gray bar), only 18% of the total CPU time
is spent doing work in either the application or the OS (blue bfs
bar), while the remaining 80% of the time the CPU cores are idle
(gray Idle bar), waiting for I/O requests to complete. The idle time
also includes the I/O time of reading the graph input data at the
initialization phase of the workload; however, we believe this time
should be relatively small due to the graph input loading benefiting
from sequential access and readahead (i.e. next 32 page prefetching).
The breakdown of the 18% time spent doing work, shows that 7.4%
of the total time is spent on the user graph processing (green, User)
while 10.7% is spent in kernel (yellow, System) as broken down in
the top two bars. This clarifies the massive amount of time spent
not doing application work due to paging: 10.7% in kernel work
and 80% idle waiting for I/O.

Out of the time spent in the kernel (System time, yellow), the
majority, 6.7% of the total time, was spent servicing major page
faults, page faults that require paging in from disk. Handling a
major page-fault consists of invoking the do_swap_page which
starts off by trying to get a free page to handle the page-fault
(do_try_free_pages). If the free page allocation fails, a page is
evicted based on the LRU chain and if the page needs to be written
into the swap device the swap_writepage is invoked. Once the
page to be evicted is ready to be unmapped, the try_to_unmap is
invoked to free up a page to handle this page-fault. Using the free
page, the swap_readpage is invoked to create a request to read in
a page from the swap device. Finally, the submit_bio is invoked
to issue the read request into the block I/O layer. While the time



MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park

100 90 80 70 60 50 40 30

5

10

15

20

25

30
bfs

100 90 80 70 60 50 40 30

5

10

15

pr

100 90 80 70 60 50 40 30

10

20

30

40

Ex
ec

ut
io

n 
Sl

ow
do

wn

bc
kron
road
twitter
urand
web

100 90 80 70 60 50 40 30

2

4

6

8

10

12
cc

100 90 80 70 60 50 40 30

100

101

sssp

100 90 80 70 60 50 40 30

100

101

102
tc

Figure 2: The relative execution time (y-axis) as less memory is available (x-axis, percent of footprint available in DRAM
starting from fitting fully at 100%). The rest of the footprint will use the swap space on the swap device. Note that sssp and tc
are plotted on log scales due to outliers.

Execution Time (100%)
bfs (18.05%) Idle (80.17%)

TDStep BUStep Syscalls
System (10.65%)User (7.4%)

Major Fault (6.65%)1.94%2.06%

Interrupt handling (0.62%)

CSRGraph (0.64%)

libgomp (2.8%)

InitParent (0.35%)

Other (0.46%)

User Cycles

System Cycles

Major Fault Handling

Minor Fault Handling

do_swap_page

do_try_free_pages

try_to_unmap

pageout, swap_writepage

swap_readpage

submit_bio

Figure 3: A Flamegraph of bfs running the web input when
running with 30% of available memory. While everything
else retains its proportional scale, the function do_swap_page
is broken down to five key functions that are represented not
by their scale, but rather by their order of execution, from
left to right.

handling major page faults is the majority of the kernel time, 12×
as much time is spent idling, waiting for the I/O to complete.
Readahead effect: An important optimization provided by the
kernel is page-in readahead, which optimistically brings in the next
few sequential pages on a page-in. On our machine, the default
readahead degree is 32 for file-backed pages, meaning that up to
32 pages would be brought into the DRAM on each page-in. This
value is 8 for pages that reside in swap space. Unless otherwise
noted, the term readahead in our context refers to swap-backed
readaheads. For readahead to be helpful, the application must
have spatial locality of access across the prefetched pages. Some of
our graph algorithms, such as page-rank (pr), have such an access
pattern and benefit from readahead, as shown in Figure 4.

The left plot in Figure 4 shows the execution time breakdown
with and without readahead for a selection of algorithms (pr, bc,
and bfs) and graphs (kron, road, and web). For both pr executions,
turning off readahead (right bars), resulted in noticeable increase
in execution time. Most of the increase came from increase in idle
time. This is because readahead was able to issue more useful
readaheads into the SSD tomake use of the idle SSD resource (more
on this in Section 4.2). However, we also see that readahead helps
bc:web less, and in the case of bc:kron and bfs:web, readahead
hurts performance.

The middle graph in Figure 4 shows the normalized number of
read/write requests sent to the SSD. We observe that the paging
traffic is mostly reads, due to the fact that the majority of the graph
data (vertices and edges arrays) stay unchanged, and each algorithm
allocates other arrays to hold specific data that the algorithm uses.

We also observe that readahead batches up many potential
read/write requests into larger I/O operations. The total number
of pages transferred with and without readahead is similar (not
shown in the graph for brevity). However, the number of I/O
requests increases by nearly 3.4x when readahead is disabled.
This demonstrates that readahead packs I/O requests into larger
read/write requests.

The graph on the right of Figure 4 shows the total number of
major page-faults normalized to the number of instructions exe-
cuted. Major page-faults are the page-faults that require reading in
pages from swap. This metric compares the intensity of the major
page-faults across different algorithm/input pairs and also with
and without readahead. By turning off readahead, we see large in-
creases in major page-faults, especially for pr. We also see varying
behavior within the same algorithm (bc) for different input graphs.

Readahead prefetches pages that are likely to be accessed in the
future, changing a major fault into a minor page-faults when they
are accessed. The time spent handling these minor page-faults is
shown in Figure 3.

We find that the kernel readahead helps reduce the number of
page-faults that require disk I/O (major page-faults), by prefetching
in next sequential pages. This readahead is effective on some algo-
rithms and the different input graphs can also affect the efficacy of
the readahead.

pr-kron pr-road bc-kron bc-web bfs-web
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ex
ec

ut
io

n 
tim

e 
(n

or
m

al
ize

d)

idle
kernel
non parallelizable
user

pr-kron pr-road bc-kron bc-web bfs-web
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SS
D 

Ac
ce

ss
es

 (n
or

m
al

ize
d)

Reads
Writes

pr-kron pr-road bc-kron bc-web bfs-web
0

100

200

300

400

Pa
ge

fa
ul

t P
er

 M
illi

on
 In

st
ru

ct
io

ns readahead on
readahead off

Figure 4: The effect of kernel readahead on the execution
time (left graph), number of SSD I/O requests (middle graph),
and the number of major page-faults per million userspace
instructions (right graph). Left bars: readahead enabled. Right
bars: readahead disabled.



Large-scale Graph Processing on Commodity Systems: Understanding and Mitigating the Impact of Swapping MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

Page-faults and swap traffic over time: To show the intensity of
the page-fault throughout the application execution, Figure 5 shows
the page-fault intensity (bottom) and virtual memory I/O to the
swap device (top) of bfs running the web input over time. The first
19 seconds of the execution result in significant writes as the graph
data is being read from the disk into the main memory, and due
to limited memory, the loaded graph is then swapped out (written
to) the swap device. However, after 20s, 99.7% of the swap device
traffic is reads, as the graph data structure is not modified, and the
graph processing allocates additional (and smaller) arrays to hold
computed values. We believe these additional arrays correspond to
the write traffic after the 20s point.

0 10 20 30 40 50
0

100000

200000

300000

400000

IO
(p
ag

e)
/s

reads
writes

0 10 20 30 40 50
0

20000

40000

60000

80000

Pa
ge

fa
ul
ts
/s

Figure 5: Reads/writes and page-fault intensity over time for
bfs running web with 30% memory. Top graph shows 4KB
Read/writes to swap device per second, and the bottom graph
shows page-faults per second.

4.2 SSD Behavior
SSDs are highly parallel devices[12] composed internally ofmultiple
independent channels, ways, and dies that can work independently
to enhance the device I/O throughput through parallelism. Using
the inherent parallelism of SSDs require the host system to generate
and queue sufficient number of requests for the SSD and that the
SSD has a sufficiently large queue to find enough independent
requests to process in parallel. The SSD controller schedules the
requests in the queue to maximize device performance.

To measure the capability of the SSD on our testbed, we used the
fio tester [3] to measure the random access performance of the SSD.
We attached to the SSD using SPDK and used the SPDK plugin for
fio [1] to measure the raw performance. We also tried measuring
the SSD performance using the libaio and io_uringAPIs, but they
were only capable of reaching 542K and 623K IOPS, respectively,
below what the device is capable of. Recent work has also reported
that kernel storage APIs do not extract the full performance of SSD
drives [10]. Thus, we only present the SPDK measurements to show
the raw SSD performance without associated kernel costs.

Figure 6 presents the random access performance of the SSD as
a function of the number of requests in the SSD’s request queue.

1 2 4 8 16 32 64 128 256 512
Request Queue Depth

0

200000

400000

600000

800000

IO
PS

 4
KB

Random writes
Random reads
Random read/write 50:50
Random read/write 99:1

Figure 6: Random access (4KB) read performance of the
NVMe SSD with varying request queue depth.

We plot various types of random access: random writes, reads,
read/write with 50:50 ratio and 99:1 ratio. The random read and
random r/w with 99:1 ratio perform identically, likely due to the
DRAM buffering of writes on the SSD. One key take-away from
this measurement is that the SSD on our testbed performs at its
peak performance when there are 128 or more requests in the
request queue for all mixes except exclusively randomwrites, which
saturates at 16.

From Figure 5, we can infer that during the first 10 seconds, the
SSD could support a maximum throughput following the random
write (blue) curve in Figure 6. From 10-20s, the SSD would exhibit
throughput following the random read/write 50:50 (green), and
from 20s until the end, the SSD would exhibit throughput similar to
the read/write 99:1 (red) curve. However, from Figure 5, we can also
see that the system is not coming close to saturating the SSD as it is
averaging only 200k IOPS compared to the 400k IOPS the device is
capable of. This suggests that the system is not maintaining 128 or
more requests in the request queue and that there is the potential
to obtain a swap throughput of nearly twice as many IOPS.

As we have seen that SSD throughput is highly sensitive to
the number of queued I/O requests, we inspect the number of I/O
requests outstanding for the swap device. Figure 7 shows the queue
depth of the swap device for the range of algorithms and graphs.
The key observation from this graph is that none of the algorithms
are capable of filling the SSD’s request queue depth to above 128.
This also means that the system is likely not utilizing the SSD device
to its full throughput capability.

Summary: With commodity algorithms on our commodity sys-
tem, the CPU cores are spending significant amount of time idling
waiting for swap requests and the SSD still has more throughput
headroom due to too few I/O requests being generated. Therefore,
as a simple remedy to this situation, we propose oversubscribing
(overcommitting) the number of user threads onto physical CPU
cores to both give the cores more work to do and generate more
I/O requests.

5 OVERCOMMITTING TO KEEP THE CORES
AND SSD BUSY

To keep the CPU cores working and to generate more requests
to use more of the performance available on the SSD, we propose
executing more user threads than the number of physical CPU
cores, or overcommitting. In the base execution evaluated until
now, the OpenMP runtime allocated one thread for each physical
CPU core. However, we propose increasing the overcommitting



MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

bfs

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

pr

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

Av
er

ag
e 

SS
Ds

' q
ue

ue
 d

ep
th

bc
kron
road
twitter
urand
web

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

cc

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

sssp

100 90 80 70 60 50 40 30
0

2

4

6

8

10

12

tc

Figure 7: The average number of in-flight requests for the swap device request queue is shown on the y-axis as less memory is
available (x-axis).

ratio to make more work available for the CPU cores during page
faults and to generate more page-faults to keep the SSD busy and
use up the available SSD I/O throughput.
Performance of overcommitting threads: We present the ef-
fect of overcommitting threads in Figure 8. The figure presents the
relative performance of the benchmarks as a function of available
memory. (The red line 𝑜𝑐 𝑓 = 1 provides the same data as Figure 2,
but inverted.) The additional lines (𝑜𝑐 𝑓 = 2, 4, 8, 16) show the perfor-
mance of the program when the overcommitting factor is increased
to 2, 4, 8, and 16 threads per CPU core.

For most algorithms and input graphs, having a larger over-
commit factor (i.e. purple, 𝑜𝑐 𝑓 = 16) shows the best performance.
However, the road input graph shows a peculiar behavior for the
bc, bfs and sssp algorithms where overcommitting actually de-
grades performance, even when 100% memory is available. We have
found that the road input graph is taking excessively long in the
synchronization points of the benchmarks, which could be due to
the high diameter of the input graph [6].

We find that the pr graph has an initial drop of performance and
afterwards the performance drop levels off. Furthermore, for the
kron, twitter, and urand benchmarks increasing the overcommit
factor can reclaim a significant amount (up to 32.2%, kron) of the
performance lost due to swapping.

In addition, there are many instances where the 𝑜𝑐 𝑓 = 8 and
𝑜𝑐 𝑓 = 16 show similar performance, namely kron:bc,cc, twitter:bc,
urand:bc,cc, and web:cc and where higher overcommitment re-
sults in lower performance, such as kron:pr, road:bc,bfs,pr,
twitter:pr, and urand:pr. We will discuss this behavior in the
next section when we discuss the SSD behavior.
Performance improvement from overcommitting: Another
visualization of performance is provided in Figure 9. This plot nor-
malizes each 𝑜𝑐 𝑓 point along the x-axis to its corresponding 𝑜𝑐 𝑓 = 1
point. I.e., this plot shows the performance improvement of over-
committing threads compared to the baseline, for each memory
availability point (x-axis). This plot would be useful to estimate the
performance gains from overcommitting threads, when the system
can only has a certain amount (e.g. 𝑥 = 50%) of the total required
memory.

In cases where running graph analytics with graph inputs that
surpass the DRAM size is inevitable, based on these experiments,
we observe that overcommitting threads with a factor of 16 can
provide up to 4.18x performance gain over the baseline execution
(bc algorithm and web graph) with a geomean improvement of
1.65x.

5.1 Kernel Behavior
Effect of overcommitting onpage-faults:Overcommitting threads
implies that more threads of execution exist on the system at the
same time. This leads to more page-faults occurring during a unit
of time. Table 2 shows the increase in the number of page-faults
per second when increasing the overcommit factor from 1 to 16.
This demonstrates that overcommitting is effective in generating
more page-faults, which will reduce idle time.

Table 2: Increase in the number of page-fault per second
due to overcommitting threads (𝑜𝑐 𝑓 = 16) over the baseline
(𝑜𝑐 𝑓 = 1) when 30% of the data fits in the memory.

pr:kron pr:road bc:kron bc:web bfs:web

1.88x 1.86x 3.70x 4.29x 2.77x

Effect of increased page-fault on execution time: Figure 10
shows the effect of an increased number of page-faults on execution
time by measuring the execution time breakdown using the kernel
time accounting.

With a decreasing amount of memory available on the system,
the execution with no overcommitting of threads (𝑜𝑐 𝑓 = 1, leftmost
bar of each group of bars) shows large increases in the idle and
kernel execution time. However, as the overcommitment factor
increases (towards right in the group of bars) the idle time is
significantly reduced. In the bc application processing the kron
graph, the idle time is greatly reduced, however, the bfs algorithm
processing the web graph leaves significant amount of idle time
left. In both cases, we find that with less memory available the
kernel time increases due to the increased number of page-faults
and interrupts that need to be handled.

Another interesting observation is that with sufficient page-
faults (generated by overcommitting threads), some workloads
show that the kernel time is greater than the idle time, e.g.,
pr:kron, pr:road, and bc:kron. To improve these cases further,
the kernel page-fault handling logic would need to be improved to
further improve performance.

5.2 SSD Behavior
Overcommitting threads generates more page-faults, resulting in
more I/O requests being queued into the SSD request queue. Fig-
ure 11 presents the average request queue length for the swap de-
vice as the available memory decreases (x-axis), and with varying



Large-scale Graph Processing on Commodity Systems: Understanding and Mitigating the Impact of Swapping MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

100 90 80 70 60 50 40 30
0

20

40

60

80

100

bc
 p

er
fo

rm
an

ce
 (%

)

OCF=1, MEM=100%

kron

ocf=1
ocf=2
ocf=4
ocf=8
ocf=16

100 90 80 70 60 50 40 30
0

20

40

60

80

100

road

100 90 80 70 60 50 40 30
0

20

40

60

80

100

twitter

100 90 80 70 60 50 40 30
0

20

40

60

80

100

urand

100 90 80 70 60 50 40 30
0

20

40

60

80

100

web

100 90 80 70 60 50 40 30
0

20

40

60

80

100

bf
s p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

cc
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

pr
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

ss
sp

 p
er

fo
rm

an
ce

 (%
)

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
0

20

40

60

80

100

100 90 80 70 60 50 40 30
memory capacity (%)

0

20

40

60

80

100

tc
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
memory capacity (%)

0

20

40

60

80

100

100 90 80 70 60 50 40 30
memory capacity (%)

0

20

40

60

80

100

100 90 80 70 60 50 40 30
memory capacity (%)

0

20

40

60

80

100

100 90 80 70 60 50 40 30
memory capacity (%)

0

20

40

60

80

100

Figure 8: The performance relative to fitting completely in DRAM (percent of max performance on y-axis) as a function
of available memory (x-axis). Varying thread overcommitting factors (ocf 1 through 16) are plotted. Each row represents a
particular algorithm and each column a particular graph. We plot the performance relative to the reference execution (no
overcommit, 100% memory in DRAM.)

overcommitting factors (different lines). There is a clear increas-
ing trend of the number of requests in the IO queue with a larger
overcommitting factor.

For someworkloads bc:kron, bc:web, and bfs:web, the increase
in the number of requests on the queue translate to performance im-
provement. The increase in IO requests on these workloads show a
similar shape to the performance improvements of these workloads
in Figure 9. This suggests that the workloads are able to extract



MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park

100 90 80 70 60 50 40 30
−100

0

100

200

300

bc
 p

er
fo

rm
an

ce
 (%

)

OCF=1

kron
ocf=2
ocf=4
ocf=8
ocf=16

100 90 80 70 60 50 40 30
−100

0

100

200

300
road

100 90 80 70 60 50 40 30
−100

0

100

200

300
twitter

100 90 80 70 60 50 40 30
−100

0

100

200

300
urand

100 90 80 70 60 50 40 30
−100

0

100

200

300
web

100 90 80 70 60 50 40 30
−100

0

100

200

300

bf
s p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

cc
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

pr
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

ss
sp

 p
er

fo
rm

an
ce

 (%
)

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
−100

0

100

200

300

100 90 80 70 60 50 40 30
memory capacity (%)

−100

0

100

200

300

tc
 p

er
fo

rm
an

ce
 (%

)

100 90 80 70 60 50 40 30
memory capacity (%)

−100

0

100

200

300

100 90 80 70 60 50 40 30
memory capacity (%)

−100

0

100

200

300

100 90 80 70 60 50 40 30
memory capacity (%)

−100

0

100

200

300

100 90 80 70 60 50 40 30
memory capacity (%)

−100

0

100

200

300

Figure 9: The performance improvement (y-axis, higher is better) from overcommitting normalized to no overcommitting at
each available memory point. The red dashed line provides the baseline performance (𝑜𝑐 𝑓 = 1) for the corresponding available
memory (x-axis).

more performance out of the swap device and this leads to the
performance gains.

Other workloads pr:kron and pr:road show slightly different
results. The IO request queue depth increases with increasing over-
committing factors. However, for the overcommitting factor of 16,

(purple line), we find that for both workloads, the performance
drops as compared to smaller overcommitting factors (e.g. 𝑜𝑐 𝑓 = 8).
For pr:kron this can be attributed to the increased kernel time
going from 𝑜𝑐 𝑓 = 8 to 𝑜𝑐 𝑓 = 16 as shown in Figure 10. For this
workload, overcommitting beyond 𝑜𝑐 𝑓 = 4 has no more effect on



Large-scale Graph Processing on Commodity Systems: Understanding and Mitigating the Impact of Swapping MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

100 90 80 70 60 50 40 30
0

500

1000

1500

2000

bc:kron

idle
kernel
non parallelizable
user

memory capacity (%)
100 90 80 70 60 50 40 30

0

50

100

150

bc:web

memory capacity (%)
100 90 80 70 60 50 40 30

0

20

40

60

bfs:web

memory capacity (%)
100 90 80 70 60 50 40 30

0

100

200

300

400

500

pr:kron

memory capacity (%)
100 90 80 70 60 50 40 30

0

10

20

30

40

50

60

pr:road

memory capacity (%)

ex
ec

ut
io

n-
tim

e
br

ea
kd

ow
n

(s
)

Figure 10: The execution time breakdown of algorithm:input with varying level of available memory (x-axis), and each bar
representing varying overcommitting factor from 1× (leftmost bar) to 16× (rightmost bar).

reducing the idle time. Instead, the larger number of threads in-
creases the burden on the kernel and results in increased kernel
time, resulting in longer execution. For the case of pr:road, we
find that the execution with overcommitting factor of 16 results
in increased number of write requests (7.6% compared to 𝑜𝑐 𝑓 = 8),
but similar number of pages written (0.3% difference) signifying
that more random write requests were generated. Finally, the idle
time increased by 2.1x as compared to 𝑜𝑐 𝑓 = 8. Based on the above
information we speculate that the smaller chunks of random-write
(as opposed to writing larger chunks of data) negatively affected
the SSD performance and increased read latencies for swapping in
data, resulting in longer system idle time.

5.3 Summary
Overcommitting threads improves performance by keeping the core
busy with meaningful work by scheduling in another thread when a
thread blocks due to a page-fault. This results in the system issuing
more page-faults and due to the SSD being capable of servicing
the increased number of I/O request concurrently, the system idle
time is reduced, resulting in a more efficient graph execution. The
reduction in idle time results in the performance improvements of
higher overcommitting factors in Figure 8 and Figure 9.

6 RELATEDWORK
Out-of-core processing: There have been numerous works on
graph processing that have focused on out-of-core processing [13,
14, 16, 19, 20, 23, 25, 26]. Such efforts have been proposed to over-
come the challenge of the graph data not fitting in memory, and
the need to store such data in slower media such as SSDs, fabric-
attached-memory, or tiered memory. FAM-Graph used graph pro-
cessing characteristics to optimizememory tiering in fabric-attached-
memory settings [23]. GridGraph [26], GraphChi [13] and Mo-
saic [14] design efficient graph blocking methods to improve the
usage of data brought into the main memory. X-Stream [19] pro-
poses an edge-centric computation algorithm to make better use
of the sequential bandwidth of the storage device. XPGraph [20]
optimizes the graph accessing to optimize for the characteristic of
the tiered memory media. GraphSSD[16] proposed implementing a
graph framework into the SSD to offload many graph related func-
tionality away from the core and into the storage. The optimizations
proposed in these works with regards to making better use of the
characteristics of the storage media through customized hardware

and algorithms could be relevant to our work on commodity algo-
rithms and systems. FlashGraph [25] controls disk access from the
userspace and overlaps computation with IO. It also differentiates
data to be stored in memory and disk. Their approach of moving
disk access into the userspace is relevant for our future research di-
rection where we need to cut down on the page-fault handling time
in the kernel. The largest difference between the prior work and
our work is that we use a commodity graph processing algorithm
and commodity hardware and operating system and investigate
the system and SSD behavior to understand the bottlenecks of the
entire system.
Kernel side improvements: Infiniswap [11] was a proposal to
disaggregate memory through a cluster of RDMA attached servers,
where data that does not fit in the memory is swapped out over
RDMA into the DRAM of other nodes in the cluster. This approach
is similar to our approach in that it runs unmodified benchmarks
and hardware, but differs in that it swaps out data onto DRAM on
other machines of the cluster. Fastswap [2] proposed a faster kernel
swapping mechanism by identifying and fixing inefficiencies in the
readahead and can be applied to our work. Manocha et al. studied
the implication of large pages on graph processing and efficient use
of large-pages using application knowledge [15]. The effect of large
pages and swapping together is a research direction that needs to
be investigated in the future.

7 CONCLUSION AND FUTURE RESEARCH
This paper investigated the effect of processing large-scale graphs
that do not fit into DRAMusing commodity algorithms and systems,
which cause graph data to be swapped to a SSD device by the virtual
memory system. Due to the long access latency of the SSD, this
swapping resulted in severe performance penalties. To address this,
we characterized the behavior of a range of commodity applications
on our commodity system and identified that both the system cores
and SSD were being underutilized. To better utilize the compute
and storage resources, we propose a simple solution to overcommit
threads onto physical cores. As a result, instead of physical cores
idling when a thread of execution triggers a page-fault, another
thread can be scheduled onto the core to do more meaningful work
and generate more page-faults. This also increased number of page-
faults sent to the SSD, which was potentially beneficial as we had
observed that the SSD had a significant amount of headroom re-
maining in its random-access throughput. Thus, overcommitting



MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA Alireza Haddadi, David Black-Schaffer, and Chang Hyun Park

100 90 80 70 60 50 40 30
memory capacity (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e 

SS
Ds

' q
ue

ue
 d

ep
th

pr:kron

ocf=1
ocf=2
ocf=4
ocf=8
ocf=16

100 90 80 70 60 50 40 30
memory capacity (%)

0

25

50

75

100

125

150

175
pr:road

100 90 80 70 60 50 40 30
memory capacity (%)

0

10

20

30

40

50
bc:kron

100 90 80 70 60 50 40 30
memory capacity (%)

0

5

10

15

20

bc:web

100 90 80 70 60 50 40 30
memory capacity (%)

0

5

10

15

20

25

30

bfs:web

Figure 11: The average number of in-flight requests on the swap device request queue with decreasing available memory
(x-axis) and varying overcommitting factors (different lines).

threads makes better use of the CPU cores to keep doing mean-
ingful work, while issuing more swapping request to the SSD to
extract more swapping bandwidth for the system.

In this workwe have demonstrated thatwe can achieve a speedup
of up to 4.18x for large-scale graph processing that does not fit
into DRAM on a commodity system with commodity algorithms
by understanding and adjusting the thread overcommitting factor.
Across our range of benchmarks, we show a geomean performance
improvement of 1.65x. However, 3 of the benchmarks showed a
performance decrease of 80.7%, indicating that while overcommit-
ting is broadly helpful, there are cases where it does not benefit
performance.

For future work, we plan on investigating the system perfor-
mance when multiple swap devices are available on the system.
Our results have shown that performance peaks out at around
𝑜𝑐 𝑓 = 16. However, even at these overcommitting factors we still
see significant amount of idle time, which we believe is due to IO
throughput limitation of our single swap SSD. We will be investi-
gating how more SSDs, and the I/O throughput they provide can
help with the system swapping performance for graph applications.
With regards to the kernel overhead, a question that needs fur-
ther investigation is the scalability within the kernel shared data
structures and routines for page faulting. This may be of particular
interest when coupled with other storage technologies that pro-
vide even lower latency, making the relative impact of the kernel
overhead greater.

ACKNOWLEDGMENTS
This work was supported by the Electronics and Telecommunica-
tions Research Institute (ETRI) grant funded by the Korean govern-
ment (grant No. 23ZS1300), the Knut and Alice Wallenberg Foun-
dation through the Wallenberg Academy Fellows Program (grant
No. 2015.0153), the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program
(grant No. 715283), and the Swedish Research Council (grant No.
2019-02429).

REFERENCES
[1] 2023. FIO plugin. https://github.com/spdk/spdk/blob/master/examples/nvme/

fio_plugin/README.md
[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-

hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
2020. Can Far Memory Improve Job Throughput?. In Proceedings of the Fifteenth
European Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 14, 16 pages.
https://doi.org/10.1145/3342195.3387522

[3] Jens Axboe. 2023. Flexible I/O Tester. https://github.com/axboe/fio
[4] Vignesh Balaji, Neal Crago, Aamer Jaleel, and Brandon Lucia. 2021. P-OPT:

Practical Optimal Cache Replacement for Graph Analytics. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 668–681.
https://doi.org/10.1109/HPCA51647.2021.00062

[5] Scott Beamer. 2016. Understanding and Improving Graph Algorithm Performance.
Ph. D. Dissertation. EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-153.html

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality Exists in
Graph Processing: Workload Characterization on an Ivy Bridge Server. In 2015
IEEE International Symposium on Workload Characterization. 56–65. https://doi.
org/10.1109/IISWC.2015.12

[7] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[8] Dominik Brodowski, Nico Golde, Rafael J. Wysocki, and Viresh Kumar. 2017.
CPU frequency and voltage scaling code in the Linux(TM) kernel. https:
//www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[9] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-Scale.
Proc. VLDB Endow. 8, 12 (aug 2015), 1804–1815. https://doi.org/10.14778/2824032.
2824077

[10] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh
Trivedi. 2022. Understanding Modern Storage APIs: A Systematic Study of Libaio,
SPDK, and Io_uring. In Proceedings of the 15th ACM International Conference on
Systems and Storage (Haifa, Israel) (SYSTOR ’22). Association for Computing Ma-
chinery, New York, NY, USA, 120–127. https://doi.org/10.1145/3534056.3534945

[11] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 649–667. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/gu

[12] Myoungsoo Jung. 2019. SSD Architecture and System-level Controllers. https:
//ocw.snu.ac.kr/sites/default/files/NOTE/Week16.pdf

[13] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-
Scale Graph Computation on Just a PC. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 31–46. https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/kyrola

[14] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a Single
Machine. In Proceedings of the Twelfth European Conference on Computer Systems
(Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery, New York,
NY, USA, 527–543. https://doi.org/10.1145/3064176.3064191

[15] Aninda Manocha, Zi Yan, Esin Tureci, Juan Luis Aragón, David Nellans, and
Margaret Martonosi. 2022. The Implications of Page Size Management on Graph
Analytics. In 2022 IEEE International Symposium on Workload Characterization
(IISWC). 199–214. https://doi.org/10.1109/IISWC55918.2022.00026

[16] Kiran Kumar Matam, Gunjae Koo, Haipeng Zha, Hung-Wei Tseng, and Murali
Annavaram. 2019. GraphSSD: Graph Semantics Aware SSD. In Proceedings of
the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 116–128.
https://doi.org/10.1145/3307650.3322275

[17] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[18] NVM Express, Inc. 2022. NVM Express Base Specification 2.0c. https:
//nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-
2022.10.04-Ratified.pdf

[19] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
Centric Graph Processing Using Streaming Partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

https://github.com/spdk/spdk/blob/master/examples/nvme/fio_plugin/README.md
https://github.com/spdk/spdk/blob/master/examples/nvme/fio_plugin/README.md
https://doi.org/10.1145/3342195.3387522
https://github.com/axboe/fio
https://doi.org/10.1109/HPCA51647.2021.00062
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-153.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-153.html
https://doi.org/10.1109/IISWC.2015.12
https://doi.org/10.1109/IISWC.2015.12
https://arxiv.org/abs/1508.03619
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1145/3534056.3534945
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/gu
https://ocw.snu.ac.kr/sites/default/files/NOTE/Week16.pdf
https://ocw.snu.ac.kr/sites/default/files/NOTE/Week16.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://doi.org/10.1145/3064176.3064191
https://doi.org/10.1109/IISWC55918.2022.00026
https://doi.org/10.1145/3307650.3322275
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf


Large-scale Graph Processing on Commodity Systems: Understanding and Mitigating the Impact of Swapping MEMSYS ’23, October 2–5, 2023, Alexandria, VA, USA

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 472–488. https://doi.org/10.1145/2517349.2522740

[20] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu. 2022. XP-
Graph: XPline-Friendly Persistent Memory Graph Stores for Large-Scale Evolving
Graphs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1308–1325. https://doi.org/10.1109/MICRO56248.2022.00091

[21] Rafael J. Wysocki. 2020. intel_idle CPU Idle Time Management Driver. https:
//docs.kernel.org/admin-guide/pm/intel_idle.html

[22] Jong Yuh, Jason Li, Heguang Li, Yoshihiro Oyama, Cynthia Hsu, Pradeep Anan-
tula, Stanley Jeong, Anirudh Amarnath, Siddhesh Darne, Sneha Bhatia, Tianyu
Tang, Aditya Arya, Naman Rastogi, Naoki Ookuma, Hiroyuki Mizukoshi, Alex
Yap, Demin Wang, Steve Kim, Yonggang Wu, Min Peng, Jason Lu, Tommy Ip,
Seema Malhotra, David Han, Masatoshi Okumura, Jiwen Liu, John Sohn, Hard-
well Chibvongodze, Muralikrishna Balaga, Aki Matsuda, Chakshu Puri, Chen
Chen, Indra K V, Chaitanya G, Venky Ramachandra, Yosuke Kato, Ravi Ku-
mar, Huijuan Wang, Farookh Moogat, In-Soo Yoon, Kazushige Kanda, Takahiro
Shimizu, Noboru Shibata, Takashi Shigeoka, Kosuke Yanagidaira, Takuyo Ko-
dama, Ryo Fukuda, Yasuhiro Hirashima, and Mitsuhiro Abe. 2022. A 1-Tb 4b/Cell
4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface. In

2022 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 65. 130–132.
https://doi.org/10.1109/ISSCC42614.2022.9731110

[23] Daniel Zahka and Ada Gavrilovska. 2022. FAM-Graph: Graph Analytics on Dis-
aggregated Memory. In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 81–92. https://doi.org/10.1109/IPDPS53621.2022.00017

[24] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia, and
Saman Amarasinghe. 2016. Making Caches Work for Graph Analytics.
arXiv:1608.01362v3 [cs.DC]

[25] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E. Priebe,
and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-Node Graphs on
an Array of Commodity SSDs. In 13th USENIX Conference on File and Storage
Technologies (FAST 15). USENIX Association, Santa Clara, CA, 45–58. https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/zheng

[26] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Association,
Santa Clara, CA, 375–386. https://www.usenix.org/conference/atc15/technical-
session/presentation/zhu

https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1109/MICRO56248.2022.00091
https://docs.kernel.org/admin-guide/pm/intel_idle.html
https://docs.kernel.org/admin-guide/pm/intel_idle.html
https://doi.org/10.1109/ISSCC42614.2022.9731110
https://doi.org/10.1109/IPDPS53621.2022.00017
https://arxiv.org/abs/1608.01362v3
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://www.usenix.org/conference/fast15/technical-sessions/presentation/zheng
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu
https://www.usenix.org/conference/atc15/technical-session/presentation/zhu

	Abstract
	1 Introduction
	2 Background
	2.1 Graph processing
	2.2 Virtual memory paging is slow
	2.3 SSDs are highly parallel

	3 Methodology
	4 Characterizing the Impact of Swapping 
	4.1 Kernel Behavior
	4.2 SSD Behavior

	5 Overcommitting to Keep the cores and SSD busy
	5.1 Kernel Behavior
	5.2 SSD Behavior
	5.3 Summary

	6 Related work
	7 Conclusion and Future Research
	Acknowledgments
	References

