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ABSTRACT
To mitigate excessive TLB misses in large memory applications,
techniques such as large pages, variable length segments, and HW
coalescing, increase the coverage of limited hardware translation
entries by exploiting the contiguous memory allocation. However,
recent studies show that in non-uniform memory systems, using
large pages often leads to performance degradation, or allocating
large chunks of memory becomes more difficult due to memory
fragmentation. Although each of the prior techniques favors its own
best chunk size, diverse contiguity of memory allocation in real
systems cannot always provide the optimal chunk of each technique.

Under such fragmented and diverse memory allocations, this pa-
per proposes a novel HW-SW hybrid translation architecture, which
can adapt to different memory mappings efficiently. In the proposed
hybrid coalescing technique, the operating system encodes memory
contiguity information in a subset of page table entries, called an-
chor entries. During address translation through TLBs, an anchor
entry provides translation for contiguous pages following the an-
chor entry. As a smaller number of anchor entries can cover a large
portion of virtual address space, the efficiency of TLB can be signifi-
cantly improved. The most important benefit of hybrid coalescing is
its ability to change the coverage of the anchor entry dynamically,
reflecting the current allocation contiguity status. By using the conti-
guity information directly set by the operating system, the technique
can provide scalable translation coverage improvements with minor
hardware changes, while allowing the flexibility of memory alloca-
tion. Our experimental results show that across diverse allocation
scenarios with different distributions of contiguous memory chunks,
the proposed scheme can effectively reap the potential translation
coverage improvement from the existing contiguity.
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1 INTRODUCTION
With ever increasing memory capacity demands for large mem-
ory applications, address translation for virtual memory support
has become a critical performance bottleneck of the applications.
To improve the address translation efficiency, there have been two
different approaches. The first approach, coverage improvement, ex-
pands the translation coverage of the translation looakaside buffer
(TLB) within a given area and power budget [5, 13, 21, 22, 30,
31, 33, 34, 40]. The second approach, TLB miss penalty reduction,
decreases miss handling latencies after memory requests miss in
the TLB [3, 4, 8, 19, 29, 36]. Although both approaches are impor-
tant for translation performance, enhancing translation coverage can
provide direct performance improvements, as the latency can be
completely hidden for TLB hits.

To improve the translation coverage, there have been a spectrum
of techniques employed in commercial systems or proposed in recent
studies. One of the most common approaches is to increase the
page size. In commercial x86 architectures, 2MB and 1GB page
sizes are supported in addition to the traditional 4KB page size.
Increasing the page sizes dramatically improves the coverage of a
TLB entry by 512 times with a 2MB large page. However, to fully
exploit the improved coverage, operating systems (OS) must be
able to allocate a 2MB chunk of physical memory for each page.
A more radical way of improving the translation coverage is to
use variable-sized HW segment translation instead of page-based
translation [21]. Its effectiveness also relies on whether the OS can
allocate a very large contiguous memory chunk for each segment.
An alternative to large pages and segments is HW-based coalescing
techniques [33, 34]. CoLT and cluster TLB coalesce multiple page
translations into a single TLB entry as long as their physical locations
are in a contiguous region. Unlike segments or large pages, the pure
HW-oriented techniques opportunistically find the contiguous pages
and coalesce them to a single TLB entry. The operating system can
improve the coalescing chances by allocating contiguous pages, but
it does not need to guarantee certain chunk sizes.

However, these approaches have trade-offs in two aspects: allo-
cation flexibility and scalability of translation coverage. Support-
ing large pages allows only limited numbers of page sizes, which
restricts the scalability of coverage. Segments have the highest scal-
ability of coverage, as they can support variable-length translation
with virtually no limit. However, memory allocation requires a much
stricter discipline, applicable only when a limited number of very
large chunks of physical memory can cover the entire memory foot-
print. On the other hand, HW coalescing allows flexible allocation,
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but coverage scalability is limited to four to eight pages, as coalesc-
ing must be purely done by the HW components.

A common requirement of the prior techniques is that the OS must
be able to consistently provide contiguous memory chunks suitable
for each technique. However, recent studies show that such contigu-
ous chunk allocation is not always possible or can even degrade the
performance of multi-socket NUMA systems [17, 24]. In addition
to the common NUMA architectures, the emerging new memory ar-
chitectures, such as 3D stacked DRAMs, network-connected hybrid
memory cube (HMC), and non-volatile memory (NVM) , can further
increase the non-uniformity in memory [14, 20, 26, 28, 32, 35]. Such
memory heterogeneity requires fine-grained memory mapping to
place frequently accessed pages on fast near memory, complicating
the allocation of large contiguous memory chunks.

Due to the non-uniformity in memory architectures, the OS can-
not always provide the best allocation tuned for different coverage
improvement techniques. Even for the same application, the actual
memory allocation status changes drastically depending on the sys-
tem state, which incurs severe performance variation [24]. One tech-
nique may work well with a certain memory allocation scenario, but
may not work well, if the OS cannot provide the optimal allocation
for the technique. Therefore, an ideal coverage improvement tech-
nique needs to be able to adapt to diverse memory allocation states.
In this paper, we propose a hybrid address translation technique
adaptable for diverse memory allocation scenarios, while improving
the translation coverage whenever possible. The hybrid technique
utilizes the high-level mapping information available to the operat-
ing system, and requires minor changes in translation architectures,
using mostly the same TLB structures and page tables.

The new translation architecture, called hybrid coalescing, en-
codes the contiguous allocation information in a subset of page table
entries, called anchor entries designated at every N page table en-
tries. The anchor entry must contain how many following pages are
allocated in contiguous physical memory. For an L1 TLB miss, if
the requested page address is not in the L2 TLB, the nearest anchor
entry for the page number is searched in the L2 TLB. If the requested
page is part of the contiguously allocated memory region, the anchor
entry can provide the translation by simply adding the virtual address
difference between the anchor and requested pages, to the physical
page address of the anchor entry. The rationale behind the anchor-
based translation is that if the majority of application memory is
allocated in some distributions of contiguous chunks, most of the
TLB entries will be filled with anchor entries. Each anchor entry can
cover a large portion of memory translation.

The proposed translation techniques can adapt to various memory
allocation scenarios, since the OS can change the density of anchor
entries in page tables. If memory allocation can provide mostly con-
tiguous chunks of memory, the anchor entries are sparsely located. If
the memory allocation is fragmented to small chunks, the anchor en-
tries are densely populated. Using the flexible anchor density, hybrid
coalescing can exploit the memory allocation contiguity as much as
possible, even if the contiguity states are diverse. As the OS encodes
the contiguity information in anchor entries, the proposed scheme
can eliminate the HW overheads of finding and coalescing contigu-
ous pages in HW-based coalescing techniques. Furthermore, without

the HW restriction, the proposed technique can vastly increase the
translation coverage of each anchor entry.

This paper is the first study to propose a HW-SW hybrid TLB co-
alescing, providing both scalable coverage and allocation flexibility.
The proposed technique has the following strengths over the prior
approaches. First, it can dynamically change different chunk sizes
for translation coalescing to adapt to the currently available conti-
guity in memory allocation. Second, unlike fixed large pages, the
OS does not need to provide a strict fixed chunk allocation. Hybrid
coalescing can extract the available contiguity as much as possible,
even if a certain fixed contiguity is not provided. Third, the proposed
scheme can support a highly scalable coverage improvement, as the
contiguity is encoded in the page table. Finally, the changes to the
current TLB and page table structures are minor.

In the experimental results, the paper shows that under various
memory allocation scenarios, the proposed scheme can provide the
best performance consistently. The proposed scheme outperforms
or performs similar with the best prior scheme for each mapping
scenario, achieving the best average performance across diverse
scenarios.

The rest of the paper is organized as follows. Section 2 discusses
challenges posed by address translation and memory heterogene-
ity. Section 3 describes the proposed hybrid translation techniques,
and Section 4 discusses how to find the best distance for anchor
placements. Section 5 presents the experimental results. Section 6
discusses the related work and Section 7 concludes the paper.

2 MOTIVATION

2.1 Translation Coverage Improvement
The first approach to improve the translation coverage is to use mul-
tiple page sizes. In the current x86 architectures, 2MB and 1GB page
sizes are supported in TLBs. Applications may explicitly request
for large pages during memory allocation, or may make use of the
transparent huge page (THP) support, the operating system can as-
sign 2MB pages, if 2MB chunks are available. Using a couple of
different page sizes does not incur significant complexity in the TLB
designs, and thus, the latest architecture can support both 4KB and
2MB pages in the L2 TLBs without requiring separate TLBs for each
page size, although the 1GB pages use a separate and smaller 1GB
page L2 TLB. However, a disadvantage of large page sizes is that its
coverage is still limited with only a few possible page sizes, and the
scalability of its coverage will be eventually limited. Furthermore,
the OS must always assign a fixed large chunk to benefit from the
translation coverage improvement.

To drastically increase the translation coverage, the second ap-
proach uses variable-sized segments. Direct segments and Redundant
Memory Mapping (RMM) support one or multiple segment regions
of variable length [5, 21]. For each segment region, the operating
system must allocate a contiguous chunk of memory. As long as such
contiguous memory allocation is possible, the translation coverage
of a single segment can scale to a very large region of virtual ad-
dress space, practically eliminating much of the address translation
costs. However, as the number of HW segment translation entries
is much smaller than the current TLB size due to the fully associa-
tive range search required for segment translation, each process can



Hybrid TLB Coalescing ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

THP Cluster/CoLT RMM Our Approach

Scalability Mod. Mod. Good Good
Flexibility Mod. Flex. Restr. Flex.

Table 1: Comparison of scalability and allocation flexibility
(Mod.: moderate, Flex.: flexible, Restr.: restricted)

only use a limited number of segments at a time. RMM supports
32 segment translation entries (range TLB) to match the latency of
the L2 TLB [21]. Furthermore, for its effectiveness, segment-based
translation relies on a very strict huge chunk allocation.

The third approach is the HW-based coalescing technique. As
proposed by CoLT and clusterTLB, there are some levels of conti-
guity in memory allocation as the operating system uses a buddy
algorithm to reduce memory fragmentation [33, 34]. In the HW
coalescing techniques, the HW TLB controller searches the page
table entries and finds contiguously allocated pages. Since a cache-
line contains multiple page table entries, the logic can efficiently
search through multiple page table entries without issuing separate
memory accesses. Although this approach does not rely on the strict
allocation of contiguous pages, as the HW controller exploits the
contiguity opportunistically, the scalability of translation coverage
is quite limited. To allow efficient lookups of coalesced entries in
TLBs, they support only a limited coalescing capability of 4-8 pages
in a TLB entry. CoLT additionally provides a fully associative mode
that supports a much larger number of coalesced contiguous pages.
However, it requires a fully associative lookup, which in turn restricts
the number of entries available.

The three approaches have different trade-offs in their HW cost, al-
location flexibility, and scalability of coverage. Large page supports
have the smallest extra HW cost, but the allocation flexibility and
coverage scalability are moderate. The segment-based translation
has the highest coverage scalability, but requires a strict memory al-
location with some extra HW for the direct segment registers. RMM
requires a fully associative range search, which severely limits the
size of the range TLB. The limited range TLB restricts the OS to
allocate only a very limited number of huge contiguous memory
regions for each process. Finally, HW coalescing allows flexible
memory allocation with fine-grained memory mapping, but the cov-
erage scalability can be the most limited among the three approaches.
Table 1 presents the comparison of the prior techniques.

2.2 Increasing Non-Uniformity in Memory
Although improving translation coverage requires allocation of con-
tiguous memory chunks, increasing non-uniformity in memory archi-
tectures within a system can pose a challenge for using large pages.
The majority of datacenter systems use multi-socket NUMA nodes
for better system density. In the NUMA systems, thread scheduling
can often mismatch the memory locations the threads are accessing.
Gaud et al. showed that that using 2MB large pages often degrades
the performance of multi-threaded applications, and thus large pages
must be selectively used to prevent causing unnecessary remote
memory accesses [17]. Kwon et al. further investigated the unfair
allocation of large pages [24]. In real systems, the availability of
large page allocation can fluctuate significantly, and processes often
receive large pages inconsistently, causing performance variations.
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Figure 1: Cumulative distributions of chunk sizes in canneal
and raytrace

Both studies show that allocating even moderate sized 2MB pages is
not trivial in real systems, when memory non-uniformity exists.

Furthermore, such memory non-uniformity is expected to increase
in future, with the advent of 3D stacked DRAM, network-based hy-
brid memory cube (HMC) [23, 26, 28, 32], and non-volatile memory
(NVM) [14, 20, 35]. With the emerging memory technologies, the
memory hierarchy can change to multiple levels of memory with
different latency and bandwidth characteristics.

The recent studies show that the capacity of stacked memory is
large enough to be part of the main memory, and thus the physical
address space consists of fast-near memory and far-slow memory
regions [28]. In a generic system model for such hierarchical main
memory, the operating system uses the virtual-to-physical mapping
using page tables to assign either near or far memory pages to
the virtual memory space of applications [28]. The HMC archi-
tecture provides multiple memory modules connected by on-chip
networks [23]. In such networked memory systems, latencies for
accessing different modules vary, increasing the non-uniformity of
memory access times.

Emerging non-volatile memory also accelerates the heterogeneity
of memory. NVM is projected to be slower (in terms of latency
and bandwidth) compared to DRAM [14, 20, 35]. However, they
are also expected to provide a higher density along with the non-
volatility characteristic. Coupling these characteristics, DRAM can
be used as a SW cache for hot pages, and NVM as a large back-
ing memory for cold pages. Agarwal and Wenisch proposed an
application-transparent page management that makes use of the non-
uniformity and different benefits of DRAM and NVM [1]. Such
multi-level memory requires fine-grained page mappings to fully
exploit its potential benefits. For example, within a 2MB virtual
page, only part of the page can be accessed frequently. Storing the
entire 2MB page in the near memory can waste the precious near
memory space.

2.3 The Effect of Memory Allocation Diversity
This section shows the variance in memory allocation with real
systems using the PARSEC benchmark suite. We recorded the map-
ping contiguity on two different x86 machines, two and four socket
NUMA machines, each running Linux 3.16.0 and 3.19.0, respec-
tively. To change the memory mapping status for each run, we
executed the workload of interest alone or with randomly executing
background jobs chosen from PARSEC. The number of concur-
rent random background jobs was controlled to pressure the system
memory while preventing any memory swapping. We periodically
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Figure 2: Relative TLB misses of prior techniques with three
different mapping scenarios

took memory map snapshots, and for each execution, analyzed the
memory map at its largest allocated state.

Figure 1 shows the CDF of two different workloads running
on the two and four socket systems. The x-axis is the number of
contiguous 4KB pages. The dotted line is the memory mapping
when the workload was running alone, while the other lines are the
multiple executions with other random background jobs. The figures
show a wide variation of memory contiguity when the memory
allocation states are varied by the different co-runners or by the
system configurations. Without clear patterns, the results confirm
that the allocation contiguity varies somewhat randomly based on the
initial state and how memory requests are generated from multiple
processes.

As the contiguity diversity shows, even the same application run-
ning on the same server may receive different memory mappings.
Thus, designing a system that works on a specific mapping may not
perform as expected when the mapping distribution changes. The
same phenomenon, of significant contiguity difference, was also
observed by Cox et al., where they found that running an applica-
tion with memhog [34] of differing intensity affected the memory
allocation contiguity of an application [10].

Figure 2 presents our evaluation of two prior schemes at differ-
ent contiguity distributions. The details of the contiguity distribu-
tions and configurations are explained in Section 5.1. Cluster TLB
(cluster) effectively reduces TLB misses for the small chunk con-
figuration, but RMM is not effective as the small number of range TLBs
cannot cover many small chunks. However, for the large chunks, the
benefit of cluster is almost similar to that with the small chunk
configuration, not getting much more improvements from increased
contiguity. On the other hand, RMM can almost eliminate TLB misses
with the large contiguity configuration.

As the memory mapping of the process is subject to variability,
it is necessary to design a translation scheme that performs well in
different mapping situations. In this work, we propose a hybrid TLB
coalescing mechanism that aims to provide an efficient translation
for different types of memory mappings.

3 HYBRID TLB COALESCING
3.1 Anchored Page Table
Large pages, segments, and HW coalescing can expand the coverage
of address translation from the limited HW resources. However,
as discussed in Section 2.1, the three approaches impose different
restrictions on the memory allocation flexibility on the operating
systems, while providing different levels of coverage scalability.
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Figure 3: Anchor entries marked in a page table (anchor dis-
tance = 4). Each anchor entry maintains mapping contiguity
starting from the anchored address

In this section, we re-balance the role of the operating system and
architectural components of the prior approaches to support flexible
memory allocation, while supporting better coverage scalability than
HW-coalescing.

In our approach, instead of relying on the HW logic to identify
contiguous pages, the operating system uses its own memory allo-
cation information to record the contiguity status to part of page
table entries. The required HW changes to the TLB lookup logic is
minimized by using mostly existing components in current MMUs.
To record the contiguous chunk information, every N page table
entries are designated as anchor entries. The anchors are placed on
entries aligned by N. N is the distance between two adjacent anchor
entries. Each anchor entry contains how many following pages are
contiguously allocated, starting from the anchor entry. The anchor
entry functions as a regular page table entry as well as the anchor
point.

Figure 3 presents an anchored page table. In the example, the
anchor distance N is 4, and thus every 4th entry is designated as
an anchor entry (A entry type in the figure). The anchor page table
entry uses unused bits to record how many following pages are
contiguously mapped, as shown in Figure 4. The first anchor entry
at the virtual page number 0x40 in Figure 3 has two pages that
have been consecutively allocated (contiguity = 2). The contiguity
counts are maintained by the operating system. If memory pages
are newly allocated, relocated, or deallocated, the operating system
must update the contiguity information in the corresponding anchor
entry, in addition to updating the entry for the page. The anchored
page table uses the same page table organization as the conventional
ones, and only encodes the extra contiguity information using the
unused bits in a subset of page table entries.

The anchor distance N should be determined to reflect the memory
contiguity status of the process. For example, if all memory pages
are allocated in 64KB chunks, the optimal anchor distance is 16
(64KB4KB). However, real memory allocations consist of various
different chunk sizes, depending on the memory allocation behavior
of the application, the OS allocation scheme, and the system memory
configuration along with its current fragmentation status. We will
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discuss an OS algorithm to find the best anchor distance in Section
4. The anchor distance must be added to the context information of
each process, along with the page table pointer (CR3 in x86). For
every context switch, the anchor distance should be restored to the
anchor distance register.

Figure 4 shows the details of page table entry used for normal
and anchor entries. The anchor entry is also a regular page table
entry, but it uses unused bits to store the contiguity information. To
store the contiguity field in the TLB, each TLB entry may need to
be increased slightly compared to the conventional ones, which do
not need to store the unused bits of page table entry in the TLB.

However, in order to make anchor TLB future proof, and to
provide sufficient scalability, we propose distributing the contiguity
among multiple page table entries. Page table entries are always
stored in groups of 8 entries per cache block of 64B. For an anchor
distance of 8, the first page table entry of the cache block is the
anchor of the seven other entries in the cache block. Thus 3 bits1are
sufficient to represent an anchor distance of 8, which will fit into a
single page table entry.

If we need to represent a larger anchor distance, there are still
8 bits that are usable in the page table entry. Furthermore, we can
use the unused bits of multiple page table entries of the same cache
block, starting from the actual anchor entry. As any anchor for
anchor distances larger than 8 will always be aligned to the first
page table entry of the cache block, the anchor contiguity reading
logic can always read from the first entry of the cache block when
reading contiguity bits distributed across page table entries in the
same cache block. This allows us sufficient contiguity of up to 211×8

if the current physical address maximum of 252B is maintained. If
the physical address maximum is bumped up to 257B (to match
the virtual address space of 5-level paging), 26×8 contiguity is still
available. This amount of contiguity is more than enough. It is worth
mentioning that page table entries are fetched from the main memory
in units of cache blocks, and will not result in any additional memory
access to read the contiguity bits from different page table entries
residing in the same cache block.

For the evaluation of this paper, we use 16 bits (maximum con-
tiguity of 216) for the contiguity field to represent the number of
contiguous 4KB pages from the anchor entry.

3.2 Translation with the Anchored Page Table
To translate with the anchored page table, only minor changes are re-
quired to the MMU. The TLB structure does not need to be modified
except for a few additional bits per entry for storing the contiguity
13 bits will represent 0 - 7. If we make the embedded contiguity exclude the anchor
entry itself, we can use the embedded value 7 to represent an anchor entry of contiguity
8.

Regular
Entry

Anchor
Entry

Contiguity
Match Operations

Hit . .
Translation done

Miss Hit Yes

Miss Hit No
Fetch the page
table entry and
fill in the TLB

Miss Miss Yes

Fetch regular entry
and anchor entry.
Fill only anchor entry
in the TLB.

Miss Miss No

Fetch regular entry
and anchor entry.
Fill only regular entry
in the TLB.

Table 2: L2 TLB operations

field, as both anchor and normal page table entries share the same
TLB. As the L1 TLB is tightly integrated with the core, and the
performance is sensitive to its access latency, the support for anchor
TLB is added to the L2 TLB.

Figure 5 illustrates the TLB and page table lookup for L1 TLB
misses. On an L1 TLB miss, the L2 TLB is looked up and if it
is a hit, as shown in Figure 5a, the translation is completed by
using the physical page number stored in the TLB entry. For an L2
TLB miss, instead of starting the conventional page table walk, the
corresponding anchor entry for the VPN is looked up in the L2 TLB,
and if a matching anchor entry is found, the translation is completed,
as shown in Figure 5b. If an anchor entry misses or the contiguity
misses, as shown in Figure 5c, a page walk is triggered. Note that
the L2 TLB holds both regular and anchor TLB entries.

Table 2 summarizes the flow of L2 TLB operations for all cases.
The first two rows represent regular TLB hit and anchor hit, re-
spectively. The third row represents a case where the anchor lookup
succeeds, but the corresponding VPN does not belong to the anchor’s
contiguous block, resulting in a miss. In this case, the translation
information for the VPN only exists in the corresponding page table
entry, requiring a page table walk followed by a regular TLB fill.

Next, the final two rows show the case where both regular TLB
and anchor lookups miss, causing a page table walk. However, it is
unknown whether the VPN is part of an anchor block or not until the
page table walk finishes, and thus both regular TLB entry and anchor
TLB entry need to be fetched. Due to the urgency of execution, the
regular TLB entry is fetched first and passed onto the core ➎ and
the L1 TLB ➏ as shown in Figure 5c. The anchor page table entry
is then fetched and the VPN is checked to see if it belongs in the
anchor block ➐. This fetch and checking step is no longer in the
critical path of core execution. If the VPN belongs in the anchor
block (confirmed by the contiguity match), the anchor TLB entry
is inserted into the L2 TLB. If the VPN does not belong to the anchor
block (denied by the contiguity match), the regular TLB entry is
inserted into the L2 TLB.

Now we will discuss how anchor entries are looked up. For a
given VPN to translate, the anchor virtual page number (AVPN)
of the incoming VPN needs to be located. The AVPN is located at
every alignment boundary of the anchor distance. For example, if the
anchor distance is 4, AVPNs are located at frames 0, 4, 8, etc. Thus
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Figure 5: L2 TLB lookup flows of regular and anchor entry lookups

locating the AVPN of an incoming VPN is calculated by aligning
the VPN by the anchor distance. This calculation is executed by
clearing out the log2anchor distance LSB bits of the VPN which
results in the AVPN. Henceforth, we will use the symbol d to denote
the log2anchor distance, which is also denoted in Figure 6.

The indexing scheme of TLB requires a modification to store
anchor entries effectively. Figure 6 represents the relation between
the virtual address and VPN, and how VPN is indexed in the TLB.
AVPNs have bits with zero values in [12:d+12) bits, as the AVPNs
are aligned to 2d pages. To ensure all consecutive AVPNs are mapped
to different sets of the TLB, and thus to use all the sets of the TLB for
anchor entries, [d+12:d+12+N) bits of the virtual address are used
as the index bits, where N denotes the log2# o f sets in the L2 T LB.
The bits [12:d+12) hold the distance between the VPN and the
corresponding AVPN. This distance is compared against the conti-
guity value of the anchor TLB entry to decide whether the VPN is
part of the anchor subblock or not. To finalize the translation on an
anchor hit, the physical page number is calculated directly by adding
the distance between the VPN and its anchor, V PN−AV PN, to the
physical page number stored in the anchor entry (APPN). The final
physical page number is APPN + V PN−AV PN.

As more pages are allocated contiguously by the anchor entry,
translation requests to those pages only need to use the anchor
entry, without needing to add their regular entries to the TLB. If
the translation is completed successfully with the anchor entry, the
actual page table entry for VPN is not fetched from the page table,
preventing page walks and preventing unnecessary pollution of the
TLB. In an ideal scenario, the TLB will be populated only with
anchor entries, each of which can provide translation for multiple
pages within its contiguity count. The translation coverage of each
anchor entry is limited by the process-wide anchor distance, which
is set by the operating system according to the contiguity of memory
chunks allocated to the process. Therefore, anchor TLB is adaptable
and scalable.

3.3 OS Implication
To support hybrid coalescing, the extra HW components are limited
to the additional register to hold the anchor distance, and adders to
produce the physical address from the anchor physical address. To
maintain the contiguity information in anchor entries, the operating
system requires modest changes.
Updating Memory Mapping: A physical memory frame can be
allocated, relocated, or deallocated for a process by the operating
system. Whenever the OS updates the memory allocation for a pro-
cess, including the initial memory allocation for the process creation,
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Figure 6: Anchor lookups require two comparison units to
check the equality of the tag and to check whether the incoming
address belongs within the anchor contiguity

in addition to updating the page table entries of changed pages, the
related anchor entries may need to be updated, if the continuity bits
in the anchor entries are affected by memory allocation changes. Af-
ter updating the page table entries and anchor entries, a conventional
TLB shootdown is invoked, and it invalidates both the page table
entries and anchor entries from the TLBs of all cores.
Anchor Distance Change: The second change is to decide the opti-
mal anchor distance for each process, based on its memory allocation
status. The OS infrequently checks the fragmentation in allocated
memory of a process, and decides the best anchor distance. Section
4 will elaborate the selection algorithm.

When the OS changes the anchor distance, those changes must be
propagated through the entire page table. Changing of the anchor dis-
tance requires two costs: updating the page table, and synchronizing
the TLB. The anchor entries for the new distance are updated to store
proper contiguity information. During the updating process, only the
page table entries that lie on the anchor distance alignment need to
be changed, as the page table walker will only look at those entries
when generating an anchor TLB entry. For example, anchor entries
at 0, 4, 8, etc. for the anchor distance of four will be updated. Thus,
when changing the distance to a larger distance, smaller number of
anchor entries need to be updated, as the distance between anchors
are increased. On the other hand, when the distance is changed to
a smaller distance, more anchor entries need to be updated. We
conducted an experiment to collect the overhead of changing the
anchor distance. The cost of sweeping through th entire page table
when the process uses 30GB of memory is 452ms, 71.7ms, 1.7ms
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for changing the anchor distances to 8, 64, and 512, respectively.
When a process is created, the default anchor distance can be set
to any number chosen by the OS, and it changes to the selected
anchor distance once sufficient amount of memory is allocated. If
the memory mapping of an application frequently changes during
the execution and results in different optimal anchor distances, the
OS can make a decision based on the cost and benefit of changing
the anchor distance.

The second cost is synchronizing the TLB after updating the page
table. In our work, we will update the entire page table, and then we
will invalidate the entire TLB. Considering the fact that the native
Linux kernel for x86 flushes the TLB on context switches, the cost
of invalidating the TLB can be relatively minor. Also, in this work
we assume the memory map change is checked in periodic epochs
of one billion instructions. Even with the periodic checks, the actual
anchor distance change is rare, as different epochs still use the same
level of memory chunk allocation.

We have found that the anchor distance change to be rarely ex-
ecuted. For specific applications or situations where the memory
mapping changes dramatically, the OS can set the limit on how often
it can be invoked. In the next section, we will show how the distance
is selected.
Permission and Page Sharing: Even if the address mapping is
contiguous, pages may have different r/w/x permissions. Hybrid
coalescing can support any fine-grained permission, by simply treat-
ing a page with a different permission as the non-contiguous page.
The translation for the page must not be handled by the anchor en-
try. Although such fine-grained permission differences reduce the
effectiveness of any TLB coalescing techniques, the prior work has
shown that permissions are commonly homogeneous in much larger
granularities[5], and the actual performance impact is expected to be
minor in common applications. For page sharing across processes,
the contiguity is set in the page table of each process. Therefore,
the contiguity in shared regions can also be exploited, although its
effectiveness may vary by the anchor distance selected for each
process.

4 DYNAMIC ANCHOR DISTANCE
In this section, we propose a dynamic anchor distance selection
algorithm to find the best density of anchor entries in the page
table. The per-process anchor distance is determined based on the
distribution of contiguous memory chunks allocated to the process.
At the beginning of a process execution, only a small amount of
memory is allocated, but many processes allocate the majority of
memory they use for the rest of execution in the early phase of
execution, as shown by Basu et al. [5]. Once the initial memory
allocation phase is stabilized, the anchor distance can be selected
from the chunk distribution.

However, memory mappings can change even during the execu-
tion of a process, as the process itself may dynamically allocate
and deallocate memory causing changes in the memory mappings.
Furthermore, the operating system may reorganize the memory map-
pings to optimize the performance. The Linux kernel may try com-
pacting memory as an effort to create more large pages for the
process [24, 34]. Operating systems may also promote pages into a
super page when sufficient reserved pages have been touched [29].

Algorithm 1 Dynamic distance selection algorithm

1: // contiguity_histogram is a list of (contiguity, frequency) pairs
2:
3: // List of available anchor distances in the system
4: Distances← [2, 4, 8, ... 216]
5:
6: // Costs for different anchor distances
7: ∀d ∈ Distances costd ← 0
8:
9: for each d in Distances do

10: // Calculate distance cost for each contiguity of histogram
11: for each (cont,freq) in contiguity_histogram do
12: anchors← cont/ anch_dist × freq
13: large_pgs← remainder / 512 × freq
14: pages← remainder × freq
15:
16: // Weigh down costs of entries with larger coverage
17: costd + = anchors /anch_dist
18: costd + = large_pgs/512
19: costd + = pages
20: end for
21: end for
22:
23: // Pick anchor distance with min cost
24: min_dist← min∀d∈Distances(costd )
25: setProcAnchorDistance(min_dist) // Set distance of the process

Large pages may be demoted by the operating system when pages of
the large pages are unmapped, or even initiated by tools that optimize
the system for NUMA-ness [17].

As the memory mapping of any running application may change
dynamically, and each execution of the same application can result
in different mappings, the operating system needs to provide a means
of setting the appropriate anchor distance based on the information
available in the OS. In the proposed scheme, the operating system
periodically checks the chunk distribution of each process, and re-
calculates the optimal anchor distance. If the new anchor distance
is sufficiently different from the current one, the anchor distance is
updated, incurring costly operations of anchor distance change.

4.1 Selection Process Overview
The main aim of the selection algorithm is to minimize the number
of TLB entries (anchor, large page, and 4KB page entries) required
to provide coverage for the active pages mapped to a process. To
assess the memory contiguity status, the OS maintains a histogram
of contiguity distribution. The contiguity histogram holds how many
contiguous memory chunks of varying contiguity are allocated to
the process.

Using the contiguity histogram, the capacity cost of storing the
page mapping in TLBs is estimated by a heuristic approximation. An
anchor distance, which minimizes the capacity cost, will be selected
as the best anchor distance. Note that in this method, the frequency
of page accesses is not considered, as accurately collecting such
information is costly in the current systems. The anchor distance
selection process only uses the static memory mapping information
summarized as the contiguity histogram. Our results show that this
static estimation can provide a reasonable accuracy for finding the
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best anchor distance. The algorithm is shown in Algorithm 1 and
described in the following paragraphs.
Heuristic Selection: The OS maintains the contiguity histogram
to reflect the contiguity of memory pages of a process. Each entry
of the contiguity histogram will hold two values: contiguity and
frequency. Contiguity represents the size of chunk, and frequency
represents how many chunks of the corresponding contiguity have
been allocated. Using the contiguity histogram, the OS estimates
how many TLB entries are required to cover the entire memory
footprint of the process. For every possible anchor distance value,
the OS goes through the contiguity histogram and assembles a cost
for each anchor distance.

The high level description of the Algorithm 1 is as follows. To
calculate the cost per anchor distance, the number of required hy-
pothetical TLB entries is approximated. Once the costs have been
calculated for all anchor distances, the distance with the smallest
cost is selected.

The counts of required TLB entries are separately counted for
4KB pages, 2MB large pages, and anchor regions. For example, an
anchor distance of 16 allows a single anchor entry to cover the size
of 64KB (16 × 4KB). In such a case, a contiguous chunk of 64KB
memory will require a single anchor TLB entry, while a 128KB
chunk of memory requires two anchor TLB entries. If there are any
remaining pages in the chunk after the coverage of anchor entries
is deducted from the chunk, the number of required 2MB pages is
calculated. The remaining pages after 2MB page deduction must
be covered with 4KB pages. Once the required numbers of entries
for different types of pages have been calculated, the total cost is
obtained from the weighted sum of different types. The weight is
the inverse of the coverage of each type.
Distance Stability: Stability of the distance selection algorithm
is important, as changing the anchor distance is a costly task, as
described in Section 3.3. The distance selection algorithm is ex-
ecuted periodically to adapt to any significant memory mapping
distribution changes. Although our dynamic selection mechanism
periodically checks the best anchor distance, the best anchor distance
for a process does rarely change, as once a large amount of memory
pages allocated to a process, their chunk distribution does not change
significantly for the rest of execution.

In our simulations, we executed the distance selection algorithm
every one billion instructions. From the execution based on real
machine traces, the distance selection algorithm did not make any
changes after making the initial selection decision. Our proposed
simple algorithm provides stability of anchor distance selection,
preventing any frequent distance changes that may cause significant
overheads.

4.2 Discussion & Future work
The dynamic distance selection scheme that we have introduced
implicitly assumes that the entire address space of a running process
has a single clusterable distance. However, an address space has
different semantic memory regions: code, data, shared libs., heap
and stack. Different regions may have different contiguity. Also,
even within the same semantic region, the contiguity distribution
may be different, as the OS may have a different memory condition
during the execution of the process.

Schemes TLB Configuration

Common L1
4KB: 64 entry, 4 way
2MB: 32 entry, 4 way

Baseline/THP 4KB/2MB(shared) 1024 entry, 8 way

Cluster
Regular TLB: 768 entry, 6 way
Cluster-8: 320 entry, 5 way

RMM
Baseline L2 TLB
RMM: 32 entry, fully associative

Anchor
4KB/2MB/Anchor(shared):
1024 entry, 8 way

Latencies
7 cycle L2 hit latency [18]
8 cycle clust./RMM/anch. hit lat.
50 cycle page table walk lat. [22]

Table 3: TLB configuration used for evaluation

Scenario Contiguity

low contiguity 1 - 16 pages (4KB - 64KB)
medium contiguity 1 - 512 pages (4KB - 2MB)
high contiguity 512 - 65,536 pages (2MB - 256MB)
max contiguity maximum

Table 4: Synthetic mapping scenarios

Thus, to further improve the performance of the anchor TLB,
region may be introduced. A region is part of virtual address space
with a separate anchor distance optimized for the region. An address
translation for a given region uses the region-specific anchor distance.
To support such a multi-region anchor TLB, an additional hardware
must hold multiple region definitions consisting of the starting VPN,
ending VPN, and anchor distance for each region. The additional
HW component is similar to the range TLB structure in RMM. The
region table will be looked up in parallel with the 4KB/2MB TLB
lookup. Since all the regions must be searched in parallel for fast
accesses, the number of regions is limited. If the TLB lookup misses,
the anchor distance from the matching region is used to lookup the
anchor entry in the L2 TLB. The dynamic distance selection can be
extended to partition the memory into different regions if there are
contiguity variances. We believe that such approach would further
improve the anchor efficiency, and we leave this as future work.

5 EVALUATION

5.1 Methodology
We simulated our work on a trace-based simulator that models the
cache and TLB structures. The configuration of the HW compo-
nents are shown in the Table 3. We executed benchmarks from
the SPECCPU2006, biobench suites, and additionally graph500 and
gups. The working set sizes of graph500 and gups are set to 8GB.
To generate the trace of each application, we used the Pin binary
instrumentation tool [27] and generated a memory access trace of 12
billion instructions. At the same time, at every billionth instruction
boundary, we periodically captured the virtual to physical mem-
ory address mapping on the real machine, using the pagemap [11]
interface provided by Linux.

For the evaluation, we show the performance of our system using
a total of 6 mapping scenarios: two mappings were captured from
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Figure 7: Relative TLB misses for demand paging mapping
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Figure 8: Relative TLB misses for medium contiguity mapping

actual system executions, and four mappings were synthetically
generated.
Real Mappings: we generated a trace on a vanilla Linux 3.18.29
machine, which uses demand paging. With demand paging, mem-
ory pages are not allocated until actual accesses (via page fault)
occur. This approach is the default behavior currently used. It min-
imizes unused pages, but the contiguity of the page mappings can
be potentially reduced. We also generated a trace when the system
uses eager paging, which allocates memory pages immediately
upon a memory allocation request from the process. We modified
the Linux kernel to map pages for the eager allocation. However, our
eager paging implementation does not directly allocate large chunks
of contiguous space, but rather requests pages through the buddy
allocator system sequentially. The use of eager paging increases the
mapping contiguity, compared to the contiguity of demand paging.
Linux transparent huge page support was enabled when generating
traces of both real mappings.
Synthetic Mappings: we generated four synthetic mappings: low
contiguity, medium contiguity, high contiguity, and maximum
contiguity. Table 4 shows the contiguity distributions for the map-
pings. For each mapping, chunk sizes are selected from the given
range with a uniform random distribution. The low contiguity
and medium contiguity represent the scenarios which cannot pro-
vide large chunks. maximum contiguity is an extreme contiguous
mapping where every contiguous virtual address region is mapped
to the same amount of contiguous physical region. This is an ideal
mapping for segment-based translations such as RMM. The syn-
thetic mappings are used to exercise the proposed scheme and prior
ones with various allocation scenarios, revealing the advantages and
disadvantages of the approaches under different allocation situations.

Comparison: We compare our work to THP (Transparent Huge
Pages [12]), an implementation of large page in Linux, cluster TLB
(cluster) [33], and RMM [21]. Cluster TLB requires a partitioned
TLB with regular and cluster entries. However, our baseline TLB
is larger than that used by Pham et al. [33]. To scale the TLB,
we increased both of the numbers of cluster and regular entries
proportionally, while keeping the set-way settings reasonable. The
original cluster TLB does not use the 2MB large page, and for fair
comparison, we also evaluate cluster-2MB which can use the large
page in the regular TLB entries in addition to clustering at 4KB. RMM
requires an additional fully associative range TLB. We employed a
32 entry range TLB as used by Karakostas et al. [21], in addition
to the 1024 entry baseline TLB. The 1024 baseline TLB with RMM
supports both 4KB and 2MB pages.

We show the performance of our method in two schemes: dynamic
and static ideal. In dynamic, the proposed dynamic distance se-
lection algorithm is used to pick the anchor distance. In static
ideal, we show the results with one optimal distance which per-
forms best for each application and mapping, by exhaustive evalua-
tion of all possible distances. The static ideal scheme is used to
illustrate the near maximum TLB miss reductions achievable by the
anchor selection algorithm.
TLB Parameters: Table 3 describes the TLB parameters for the
prior schemes and hybrid coalescing. The L1 TLB configuration is
the same for all schemes. The L2 TLB capacity is set to 1024 entries.
However, cluster partitions it to the regular and cluster entries.
In addition to the L2 TLB, RMM has the 32-entry fully associative
range TLB. The latency parameters are derived from those used by
Karakostas et al. [22].
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Figure 9: Average TLB misses of each translation scheme for all mapping scenarios

5.2 Results
We present the evaluation results of all benchmarks for demand
paging in the real mapping and medium contiguity in the syn-
thetic mapping. For the rest of mapping scenarios, we present the
mean TLB reductions due to the space constraint.

5.2.1 TLB Misses for Demand Paging and Medium Contiguity.
Figure 7 shows the relative TLB misses with demand paging, nor-
malized to those with the baseline configuration. With the transparent
huge page support turned on, the mapping of demand paging con-
tains many 2MB contiguous chunks. Therefore, all the techniques
other than baseline and cluster which do not use the large page,
benefit from the large page allocation. Across all the applications
except for omnetpp and xalancbmk, THP alone can reduce the TLB
misses effectively by average 60% for all the other applications.
Although the original cluster reduces TLB misses effectively for
mcf and milc significantly, their reductions are limited for some
applications (canneal, gups, mummer, and tigr) without support of
the large page. However, cluster-2MB can benefit both from HW
coalescing and large page, achieving 64% reduction on average. RMM
is also effective for the majority of applications, and their reductions
are on average 53.2% which are similar to THP. However, both THP
and RMM are not very effective for omnetpp and xalancbmk, as those
applications do not exhibit large chunk contiguity. For the two ap-
plications, HW coalescing of cluster and cluster-2MB effectively
reduces TLB misses among the prior schemes.

Unlike the prior schemes, hybrid coalescing can consistently re-
duce TLB misses, by exploiting both large page contiguity and
fine-grained coalescing. With demand paging, the proposed dy-
namic hybrid coalescing can provide the reduction of 67.3% on
average, which is better than the best prior scheme (cluster) for
the mapping.

Figure 8 plots the evaluation on the medium contiguity map-
ping. Unlike demand paging, this mapping has contiguity mostly
less than 2MB page, and thus THP is ineffective. RMM also shows
similar results to THP, due to the lack of high contiguity. For this fine-
grained contiguity existing in the mapping, cluster and cluster-2MB
reduce misses effectively for many applications, but they are not
very effective for graph500, gups, and tigr. For cactusADM, the
misses get worse due to the statically partitioned TLB between regu-
lar and clustered entries. In cactusADM, the clustered TLB entries
are underutilized, while the regular entries are full.

The proposed hybrid coalescing can effectively exploit the avail-
able contiguity, excelling the other schemes. It can effectively utilize

demand medium-contiguity

R.hit A.hit L2 miss R.hit A.hit L2 miss

astar 43 % 49 % 6 % 52 % 46 % 2 %
cactus 49 % 51 % 0 % 11 % 44 % 45 %
canne. 33 % 55 % 12 % 25 % 59 % 16 %
GemsF. 91 % 8 % 1 % 13 % 85 % 2 %
mcf 91 % 8 % 1 % 66 % 32 % 2 %
milc 74 % 25 % 1 % 3 % 92 % 5 %
omnet. 48 % 29 % 23 % 62 % 38 % 0 %
soplex 75 % 12 % 13 % 57 % 43 % 0 %
sphinx 87 % 3 % 10 % 53 % 47 % 0 %
xalan. 18 % 16 % 66 % 66 % 34 % 0 %
mummer 39 % 5 % 56 % 70 % 22 % 8 %
tigr 61 % 34 % 5 % 61 % 22 % 17 %
gups 27 % 20 % 53 % 11 % 1 % 88 %
graph. 49 % 5 % 46 % 29 % 5 % 66 %

Table 5: L2 TLB hit/miss statistics. The regular L2 TLB hit rate
(R.hit), anchor TLB hit rate (A.hit), and L2 TLB miss rate are
shown.

the medium contiguity of less than 2MB, which cannot be exploited
by THP and RMM. At the same time, hybrid coalescing has higher cov-
erage than cluster and cluster-2MB. Even for the worst case gups
application, it can reduce TLB misses by 11.4%. The difference be-
tween dynamic and static-ideal is relatively small. However, for
cactusADM, the dynamic algorithm does not find the best optimal
distance, although dynamic still reduces TLB misses significantly. It
is due to the static nature of the dynamic algorithm which finds the
distance based on the allocation snapshot, without knowing access
frequency.

Table 5 shows the access breakdowns at the L2 TLB for the
demand paging and medium contiguity mappings. As discussed
with Figure 7, the 2MB large page is very effective for demand
paging, and thus many L2 TLB accesses hit on the regular L2 TLB
entries containing large pages. For applications with relative low
regular hit rates, such as canneal, xalancbmk, and gups, anchor
entries additionally absorb 16-55% of TLB accesses. In medium
contiguity, the regular entry hit rates are much lower than those
in demand paging, due to the lack of large page accesses. In such
cases, anchor entries can be very effective in reducing TLB misses.

5.2.2 TLB Miss Summary of All Mapping Scenarios. Figure 9
summarizes the TLB miss reductions for all six mappings. Demand
paging and eager paging provide both the 2MB large page and
fine-grained coalescing chances depending on applications, with a
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demand eager low medium high max
astar_biglake 16 256 4 16 128 256
cactusADM 4K 8K 4 32 256 512
canneal 1K 512 4 8 256 1K
GemsFDTD 8K 8K 4 32 256 1K
mcf 64K 64K 4 32 512 64K
milc 16K 8K 4 32 256 256
omnetpp 4 4 4 16 128 256
soplex_pds 2 2 4 16 64 64
sphinx3 4 4 4 32 32 32
xalancbmk 4 4 4 32 128 128
mummer 2K 32K 4 32 128 256
tigr 2K 512 4 32 256 512
gups 32K 32K 4 32 1K 64K
graph500 64K 16K 4 32 1K 64K

Table 6: Anchor distances in pages, selected by the dynamic dis-
tance selection algorithm.

higher overall benefit from the 2MB large page. Effectively utilizing
the two opportunities, cluster-2MB can provide the best reduction
among the prior schemes, reducing TLB misses by 64% and 68.4%
on average for demand and eager mappings, respectively. The pro-
posed hybrid coalescing further reduces TLB misses benefiting from
a higher coalescing capability than cluster-2MB, achieving 67.7%
and 75.7% reduction.

The low and medium continuity mappings provide few 2MB
or larger chunks, and thus only the prior HW clustering and the
proposed hybrid coalescing can reduce TLB misses. However, with
better coalescing scalability, the hybrid coalescing can reduce TLB
misses by 35.2% and 78.5%, compared to 31.5% and 40.4% of
cluster-2MB in low and medium mappings. For these mappings,
THP and RMM are nearly ineffective. The high and maximum contiguity
mappings provide large contiguous chunks which help both THP and
RMM. RMM, with better coverage scalability, almost eliminates TLB
misses. Even in these cases, the proposed hybrid coalescing almost
matches the miss reductions of RMM.

From the results, we conclude that our scheme outperforms or
performs similar to the best prior scheme for each mapping scenario,
achieving the best average performance across diverse scenarios. It
can adjust the coalescing capability dynamically to match various
allocation contiguity distributions. Such dynamic adjustment allows
it to extract whatever available contiguity as efficiently as possible.

5.2.3 Anchor Distance Selection. Table 6 shows the anchor dis-
tances selected by the dynamic selection algorithm for different
mapping scenarios. The values shown are the number of consecu-
tive pages. For demand paging and eager paging, the contiguity
distributions are highly skewed for many applications with a small
number of very large contiguous chunks in memory allocation. As
these chunks tend to dominate the memory footprint, the selection
algorithm chose large distances. Note that 64K is the largest anchor
distance used for the evaluation. However, for a few applications,
such as omnetpp and xalancbmk, a small distance of 4 pages are se-
lected. As shown in Figure 7, the two applications have a fine-grained
contiguity which can only be coalesced by cluster, cluster-2MB,
and the proposed scheme.

However, for synthetic mappings, the chunk distributions are uni-
form. For the chunk distribution of each configuration, the heuristic
algorithm finds a reasonably good distance for each range, with four
in low contiguity to 32-1K in high contiguity.

5.2.4 Translation CPI. Figures 10 and 11 show the breakdown
of the cycles spent per instruction in the address translation. The
L1 TLB will be accessed in parallel with the cache access and so
the L1 TLB access latency is hidden [22]. We estimate the CPIs
based on the latencies in Table 3. The L2 hit portion denotes CPIs
spent for regular L2 TLB hits. The next CPI portions are specific
to each technique: cycles spent for anchor hits, cluster TLB
hits, range TLB hits for hybrid coalescing, cluster, and RMM,
respectively. Firstly, the CPI results are consistent with the TLB
miss analysis in Figures 7 and 8, although the actual CPI changes
are affected by TLB misses per instruction. The proposed hybrid
coalescing is better than or almost match the best prior scheme for
each mapping scenario. For applications with high TLB miss rates
in the baseline configuration, the performance improvements of the
proposed scheme are significant, with the CPI reduction of 0.85, 2.7,
and 5.82 for gups, tigr and graph500, respectively, for the demand
paging mappings. In the case of graph500 executing on the medium
contiguity mapping, up to 3.51 CPI reduction is expected.

6 RELATED WORK
There have been many prior work to improve different aspects of
address translation to support virtual memory.
Improving TLB Coverage: Improving the TLB coverage has been
a topic of research over the years [5, 13, 21, 22, 30, 31, 33, 34, 40].
Talluri and Hill proposed subblocking of TLB entries that allows a
single TLB entry to represent multiple page mappings [38] within a
subblock of pages. Subblocking has influenced this work and other
work, including CoLT [34] and Cluster TLB [33]. In multi-core sys-
tems, data sharing across multiple cores is exploited to reduce TLB
misses by collaboratively using shared translation entries [9, 25, 37].
Papadopoulou et al. proposed a prediction-based indexing approach
to support multiple page size with a single lookup when predictions
hit [30]. Recently, Cox et al. proposed Mix TLB supporting multi-
ple page sizes using a single indexing scheme [10]. With a single
indexing for 4KB page, it intentionally allows multiple TLB entries
of a large page to exist in the TLB. However, based on the observa-
tion that even superpages tend to be allocated consecutively by the
OS, HW coalescing of superpage entries offsets the capacity waste
caused by multiple TLB entries of the same large page.
Reducing TLB Miss Penalty and Prefetching: There are many
parts of the page table walker that can be optimized to minimize
the TLB miss penalty. The first set of studies reduces the page table
walk overhead by improving the translation cache [3, 8], which
minimizes the number of memory accesses to fetch intermediate
page table nodes. Speculation can also be used to speed up the page
table walking procedure [4]. By using the reservation scheme [29], it
is possible to accurately interpolate the missing address by using the
data that is available. Finally, prefetching can be used to proactively
insert pages that may be used in the near future into the TLB [19, 36].

A different approach to reduce address translation is virtual
caching. Virtual caching allows to defer address translation after
cache misses. Several prior work on virtual caching save TLB
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Figure 10: CPI breakdown of translation overhead for demand paging
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Figure 11: CPI breakdown of translation overhead for medium contiguity

power consumption by reducing TLB accesses significantly, or re-
duce page table walks as large on-chip caches can contain data
which could have missed in TLBs of the conventional physical
caching [6, 31, 39, 40].
Virtualized Systems: As virtual machines add an additional layer
of address translation, TLB miss latencies are amplified, and thus the
virtualized systems exhibit more severe performance drops by TLB
misses, compared to native ones. Various prior work have tackled
the translation challenge of virtualization. Gandhi et al. extended the
segment-based translation to support nested translation of virtualized
systems [15]. On the other axis, there were studies that improve the
TLB miss latency handling by improving the translation cache [7]
or improving the organization of the nested page tables [2, 16].

7 CONCLUSION
This paper proposed a novel HW-SW hybrid TLB coalescing tech-
nique. By encoding allocation contiguity information in page tables,
highly coalesced address translation was possible, only with minor
changes to the existing MMU designs. The hybrid approach not
only provides high coverage scalability by using the OS support,
but also allows adaptability to diverse memory fragmentation status.
With various memory mapping scenarios, our experimental eval-
uation showed that the proposed scheme can provide translation
performance better than or matching the best prior scheme for each
scenario.
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