
Efficient Synonym Filtering and Scalable Delayed Translation for Hybrid Virtual
Caching

Chang Hyun Park, Taekyung Heo, Jaehyuk Huh
School of Computing, KAIST

{changhyunpark, tkheo}@calab.kaist.ac.kr, and jhhuh@kaist.ac.kr

Abstract—Conventional translation look-aside buffers
(TLBs) are required to complete address translation with
short latencies, as the address translation is on the critical
path of all memory accesses even for L1 cache hits. Such strict
TLB latency restrictions limit the TLB capacity, as the latency
increase with large TLBs may lower the overall performance
even with potential TLB miss reductions. Furthermore, TLBs
consume a significant amount of energy as they are accessed
for every instruction fetch and data access. To avoid the
latency restriction and reduce the energy consumption, virtual
caching techniques have been proposed to defer translation to
after L1 cache misses. However, an efficient solution for the
synonym problem has been a critical issue hindering the wide
adoption of virtual caching.

Based on the virtual caching concept, this study proposes a
hybrid virtual memory architecture extending virtual caching
to the entire cache hierarchy, aiming to improve both per-
formance and energy consumption. The hybrid virtual caching
uses virtual addresses augmented with address space identifiers
(ASID) in the cache hierarchy for common non-synonym
addresses. For such non-synonyms, the address translation
occurs only after last-level cache (LLC) misses. For uncommon
synonym addresses, the addresses are translated to physical
addresses with conventional TLBs before L1 cache accesses. To
support such hybrid translation, we propose an efficient syn-
onym detection mechanism based on Bloom filters which can
identify synonym candidates with few false positives. For large
memory applications, delayed translation alone cannot solve
the address translation problem, as fixed-granularity delayed
TLBs may not scale with the increasing memory requirements.
To mitigate the translation scalability problem, this study
proposes a delayed many segment translation designed for the
hybrid virtual caching. The experimental results show that our
approach effectively lowers accesses to the TLBs, leading to
significant power savings. In addition, the approach provides
performance improvement with scalable delayed translation
with variable length segments.

Keywords-address translation, hybrid virtual cache, synonym
detection, segmented translation

I. INTRODUCTION

With ever growing system memory capacity and increas-
ing application requirements, traditional memory virtualiza-
tion has become a performance bottleneck for big memory
applications [1], [2]. For such applications, conventional
translation lookaside buffers (TLBs) can no longer cover
large working sets and generate excessive TLB misses. Fur-
thermore, in the traditional memory hierarchy, the address
translation through TLBs must be completed before L1

cache tag matching. Since the address translation is on the
critical path of memory operations, it is difficult to increase
the TLB capacity arbitrarily to cover more memory pages.
In addition, the address translation consumes a significant
amount of dynamic power for TLB accesses [3], [4].

An alternative approach to reduce the cost of address
translation is virtual caching [3], [5], [6], [7], [8], [9], [10].
Virtual caching postpones the address translation until an
L1 cache miss occurs. It eliminates the critical translation
overhead between the core and L1 cache, reducing the
energy consumption for address translation. However, a
critical problem of virtual caching is the synonym problem
where different virtual addresses can be mapped to the
same physical address, allowing multiple copies of the same
data in a cache. Prior studies address the synonym problem
with solutions tuned for L1 virtual caches [3], [5], [6],
[8], [9], [10]. They invalidate synonyms with a reverse
translation to identify existing synonyms [3], [5], [6], or
use self-invalidation with coherence protocol supports [7].
A software-oriented approach has also been proposed with
software-based cache miss handling [8].

Inspired by the prior virtual caching techniques, this
paper proposes a new hybrid virtual caching architecture
supporting efficient synonym detection and scalable delayed
translation. Unlike the prior virtual caching approaches,
the proposed hybrid caching extends the scope of virtual
addressing to the entire cache hierarchy for non-synonym
addresses. Synonym addresses are detected by a synonym
filter, and translated to physical addresses with conventional
TLBs. Each physical memory block is addressed only by
a single name, either virtual or physical address. As non-
synonym private pages account for the majority of memory
pages, most of the actual address translations are deferred
to after last-level cache (LLC) misses. By extending the
scope of virtual caching, the proposed hybrid translation
aims not only to reduce the TLB access energy, but also
to improve the translation performance, since large on-chip
caches often contain cachelines which could have missed the
conventional TLBs. Figure 1 describes the overall translation
architecture of the proposed hybrid virtual caching. For
synonym candidates detected by the synonym filter, TLB
accesses occur prior to the L1 cache accesses. For non-
synonym pages, delayed translation is applied only after



LLC misses.
To allow such a hybrid translation, a key component is the

synonym filter. Exploiting the fact that synonym pages are
uncommon in real systems, the study proposes a synonym
filter design based on Bloom filters with a low latency
and low power consumption [11]. The operating system
updates the bloom filter values, when it changes the page
state to shared (synonym). The synonym filter guarantees
the detection of synonym pages, while occasionally causing
false-positives. With the synonym filter, any page in the
virtual address space can be changed to a synonym page
without restriction, unlike the prior approach [3].

Delaying translation can reduce TLB access overheads
both in energy and latency significantly. However, for appli-
cations with large working sets, the delayed translation may
not completely eliminate performance degradation due to a
large number of delayed TLB misses. To reduce such trans-
lation costs, in addition to the traditional page granularity
translation which will eventually reach the coverage limit,
this paper proposes a many segment translation mechanism.
It extends the prior variable-length segment translation [1],
[12]. The prior segment translation proposed for physical
caches, maps part of the virtual address space to one or more
contiguous physical regions with variable length segments
for each process. Unlike the prior segment approaches on
the critical core-to-L1 path, providing 10s of concurrent
segments [12], the proposed delayed segment translation can
support 1000s of concurrent segments efficiently, supporting
better OS memory allocation flexibility to mitigate internal
and external fragmentation problems.

The proposed architecture differs from the prior ap-
proaches in four aspects. First, this study extends virtual
caching to the entire cache hierarchy. For non-synonym
cachelines, cache blocks are indexed and tagged by their
address space identifier (ASID) and virtual address. The
coherence mechanism also uses virtual addresses with ASID
for non-synonym cachelines. Second, this study proposes an
efficient HW and SW-combined synonym filtering technique
based on Bloom filters. Unlike the prior pure hardware-
oriented hash-based synonym detection [13], in this study,
the operating system updates the Bloom filters, not requiring
any HW synonym tracking. With the hash-based filtering
technique, only the synonym candidates access TLBs before
L1 accesses. Third, as the fixed page-granularity delayed
translation after LLC misses will reach its coverage limit for
large memory applications, this study investigates segment-
based delayed translation supporting many concurrent seg-
ments. Finally, the proposed scheme mitigates the overhead
of HW-based virtual machine supports, since the costly two-
step translation is delayed until LLC misses. We propose to
extend the synonym filter to detect synonym pages induced
by both the guest OS and hypervisor.

The experimental results show that the proposed synonym
filter is very effective with negligible false positives. The

Memory Access

Synonym Candidate

False Positive

ASID + VA PA
Non Synonym

Memory

Delayed Translation

TLB

Cache Hierarchy

Synonym Filter

Figure 1. A synonym filter detects synonym candidates and allows non-
synonym addresses to bypass translation until LLC miss. The components
in gray are newly added by this work.

performance of memory intensive applications is improved
by 10.7% compared to the physically addressed baseline
system, and the power consumption of the translation com-
ponents is reduced by 60%. For virtualized systems, the
performance gain becomes larger with 31.7%, compared to
a system with a state-of-the-art translation cache for two-
dimensional address translation.

The rest of this paper is organized as follows. Section II
presents virtual caching and its synonym problem with
other prior work. Section III presents the proposed hybrid
translation and synonym filtering. Section IV describes
the segment-based delayed translation. Section V presents
how to support system virtualization efficiently. Section VI
presents the performance and energy improvements. Sec-
tion VII concludes the paper.

II. BACKGROUND & MOTIVATION

A. Virtual Caching

Virtual caching postpones the address translation until a
cache miss occurs, allowing caches to store cachelines with
virtual address [3], [5], [6], [7], [8], [9], [10], [14]. With such
deferred translation, virtual caches can reduce the dynamic
power consumption for TLB accesses. A recent study has
shown that using virtual L1 caches opportunistically reduces
more than 94% of energy consumed by the data TLBs [3].
Although the prior virtual caching studies commonly aim
to reduce power consumption for address translation, virtual
caching can improve performance too. The cached data do
not require address translation and large on-chip caches
can potentially have a larger data coverage than the limited
TLBs. Such phenomenon was recently measured by Zhang
et al. [15], and for several workloads, more than 95% of
accesses that cause TLB misses were resident in the caches.
For such cases, physically-tagged caches must wait for the
TLB miss handling, even if the cachelines are in on-chip
caches. Furthermore, by deferring address translation, the
capacity of delayed TLBs can be increased as they are no
longer restricted by the critical core-to-L1 path latency.

Virtual caching, despite having such desirable properties,
has critical problems which have hindered its wide com-
mercial adoption. The main problem is the M:N mapping



between the virtual address space and physical address space
resulting in two types of problems. The first type of problem,
called homonym, occurs when two different physical pages
map to the same virtual page of different processes. To
virtual caches, the virtual page number looks identical,
however the underlying physical pages are different. The
homonym problem has been fixed by adding the address
space identifier (ASID) in each cache tag entry, to identify
the cacheline owner for the given virtual page number. The
second type of problem occurs when two different virtual
addresses map to a single physical address. This problem,
called synonym or aliasing, is the main crippling factor of
widespread use of virtual caches. We discuss the synonym
problem and prior work in the next section.

B. Prior Work on Synonym Problem

Synonyms can create multiple cachelines with different
virtual addresses for the same physical address. The main
problem of synonyms is that if a cacheline at one virtual
address is updated, the other cachelines pointing to the
same physical address need to see the update, otherwise
the other cachelines will have stale data. There have been
several hardware and/or software approaches to resolve the
coherence problem [5], [6], [7], [8]. There are two common
components to support coherence for synonyms. First, a
synonym tracking mechanism finds all cached synonym
copies of the same physical block. Second, a synonym
detection mechanism identifies whether a given address is
a synonym address. The synonym tracking can also be used
as a detection mechanism. The two mechanisms are used
together or in isolation to address the synonym problem.
HW-based synonym tracking: A key component to main-
tain the coherence of synonyms is to track virtually ad-
dressed cachelines that share common physical counterparts.
Once the synonyms are identified, they can be invalidated
or downgraded by checking all existing copies. To track
synonyms, reverse mapping is used either by adding extra
address tags in virtual caches [5], or by adding back-pointers
in the L2 cache [6]. Goodman proposed to use dual-tag
arrays with virtual and physical tags to support coherence
through physical addresses for virtual caches [5]. Wang et
al. proposed to keep back-pointers in the private physically
addressed L2 cache, which track synonyms in the virtual L1
cache [6].

In parallel to our study, Yoon and Sohi proposed to map
synonym pages of the same physical address to a leading
virtual address. It uses a hash table, much like a Bloom
filter used in our work, to identify synonyms and translate
to the leading virtual address before accessing the L1 virtual
cache [16].
Isolating synonym pages by OS: Instead of detecting syn-
onyms, the OS can isolate synonym pages in certain known
virtual addresses. OVC uses virtual address for private data,
and physical address for shared data in L1 caches [3]. This

approach restricts the OS to use a fixed region of virtual
address space for synonym pages. In addition, unlike our
approach, OVC limits virtual caching to the L1 cache, as
it aims to reduce energy, and it requires reverse translation
through extra physical tags in L1s for coherence.
SW-oriented approach: Single address space operating
systems use one address space for all processes, and thus the
synonym problem does not occur [17]. However, protection
across different processes must be supported by an extra
protection lookaside buffer. An alternative software-oriented
approach is to use virtually addressed caches, but during
cache miss handling, the address must be translated to a
physical address by a SW-based cache miss handler [8].
Although it simplifies the HW complexity for the synonym
problem greatly, a slow SW handler must intervene for cache
misses.
Self-invalidation: Kaxiras and Ros proposed to use self-
invalidation and downgrade from virtual L1 caches [7].
Using the support from coherence protocols, synonyms in
L1 caches are self-invalidated to maintain their coherence.
However, a limitation of this approach is that it requires a
cache coherence protocol which does not send any coherence
request directly to virtual L1 caches. To classify synonym
and non-synonym addresses, they use a combined HW/SW
approach to mark sharing status in page table entries.
Intermediate address space: Enigma makes use of the
intermediate address space, available in the PowerPC ar-
chitecture, that exists between virtual and physical address
spaces[15]1. Between the core and L1, a virtual address is
translated to an intermediate address through a large fixed
granularity segment. Memory sharing between processes is
achieved by large fixed granularity segments. The cache
hierarchy uses the intermediate address space, and the ad-
dress translation occurs after LLC misses. Synonyms are ad-
dressed by the first-level translation with coarse-granularity
mapping. The second-level translation after LLC misses uses
conventional page-based translation with TLBs. Although
Enigma exploits the large on-chip caches to reduce the
burden of address translation for performance, its fixed page-
based translation between the intermediate and physical
address spaces limits translation scalability as shown in our
results section.

C. Synonym Pages for Common Workloads

Synonym pages are used infrequently for many common
workloads. Table I shows the ratio of r/w shared memory
pages out of the total used memory pages, and the ratio
of memory accesses to shared regions over all memory
accesses. The presented shared memory ratio is an average
of the ratios sampled per second. From the entire PARSEC

1 PowerPC provides three address spaces in the order of logical, virtual,
and physical; whilst Enigma renames the virtual address to intermediate
address. We name these spaces in the order of virtual, intermediate, and
physical for consistency with our work.



Table I
RATIO OF R/W SHARED MEMORY AREA AND ACCESSES TO THE R/W

SHARED REGIONS

Shared area Shared access
ferret 0.004543% 0.849976%
postgres 66.753033% 15.788043%
SpecJBB 0.328539% 0.023681%
firefox 0.754580% 0.001840%
apache 9.402985% 0.444037%
SPECCPU 0% 0%
Remaining
Parsec 0% 0%

suite, only ferret uses shared memory regions, but the
actual memory area and access frequency are limited. Other
than ferret, the rest of PARSEC and SPECCPU2006
applications do not exhibit any r/w memory sharing. The
proposed scheme treats read only (r/o) shared pages equally
to private pages, as r/o shared pages do not cause any
coherence problem.

In addition to the SPECCPU and PARSEC applications,
we examined four additional applications that have synonym
pages. Only postgres exhibits a large number of shared
memory pages, since it allows multiple processes to share
data. However, the other applications have a relatively small
amount of memory sharing. Even for postgres, the actual
memory accesses to the shared region is 16% of the total
accesses. In the next section, we will exploit the lack
of synonym pages in applications to design an efficient
synonym detection mechanism.

A key observation for addressing the synonym problem
is that as long as a unique address is consistently used
to identify each physical memory block, the coherence
problem does not occur. Our hybrid caching uses either
virtual or physical address, and guarantees that the same
unique address is used for each memory block.

III. EFFICIENT SYNONYM FILTERING

This section describes the proposed hybrid address trans-
lation architecture which allows delaying address translation
for the majority of memory accesses.

A. Hybrid Address Translation

Cache Tag Extension: The hybrid virtual caching uses
address space identifier (ASID) concatenated to virtual ad-
dress (VA) for non-synonym pages, and physical address
for synonym pages. The cache tags are illustrated in Fig-
ure 2. The cache tag entry contains a synonym bit which
distinguishes a synonym (or physical address) from non-
synonym (or ASID+VA). ASID bits are added to prevent the
homonym problem of non-synonym cachelines. The ASID
is configured to 16 bits which allow 65,536 address spaces,
and such a large number of address spaces will be required
for large systems and virtualized systems. For synonym
cachelines, physical addressing is used, ignoring ASID. Note

VA
VA
PA

16 bits n bits 2 bits1bit
ASID PA / VA tag PermissionS

0
1
1

not used 0x3ff not used 
0x0007 0x9ff rw
0x0001 0x4ff ro

Figure 2. Cache tag extension for ASID and status/permission bits

that the PA/VA tag portion is shared both by synonym
and non-synonym cachelines, and the PA/VA tag width is
determined by the maximum bits required for either virtual
or physical address space. For example, AMD systems use a
large 52 bit physical address space, which allows the virtual
tag to fit in the physical tag. Permission bits are added for
non-synonym cachelines to check access permission. The
additional tag bits induce negligible overheads. The results
from CACTI [18] estimates 1.7-3.7% static and 0.16-0.76%
dynamic power increase for all three levels of the cache.
Address Translation: The first step of the address trans-
lation is to access the synonym filter. The synonym filter
checks whether the address is a synonym candidate. An
important property of the synonym filter is that it must be
able to detect all synonym addresses correctly, although it
can falsely report a non-synonym address as a synonym page
(false-positive).

If an address is determined to be a non-synonym address,
the ASID and virtual address are concatenated to access
the L1 cache (ASID+VA). ASID+VA is used throughout
the entire cache hierarchy for non-synonym addresses. Even
the coherence protocol uses the ASID+VA address. When
the external memory needs to be accessed, the ASID+VA
is translated to the actual physical address through delayed
translation. The delayed translation can use conventional
TLBs with fixed page sizes, or variable-length segments as
we will discuss in Section IV. Since the majority of memory
accesses are to non-synonym addresses, the accesses to the
synonym filter and the L1 cache with ASID+VA can be
overlapped, hiding the synonym filter latency.

If an address is predicted to be a synonym address by
the filter, a normal TLB access occurs. For a TLB hit, the
address is translated to a physical address, if it is truly a
synonym. If the detection was false positive, the TLB entry
for a non-synonym page will report the false positive status2.
For the false-positive case, the address is not translated to
a physical address, and the L1 cache block accessed with
ASID+VA is used. If a TLB miss occurs, the HW page
walker will translate the address and fill the TLB entry. For a
false-positive caused by the synonym filter, the non-synonym
TLB entry is added to the TLBs to quickly correct potential
false-positives for future accesses to the address.

The proposed hybrid design does not require any reverse

2 The page table entries need to add a single sharing bit for page
mappings to mark a page sharing or non-sharing. Such information is easily
accessible by the kernel and reserved bits are available for use.



32KB
granularity

VA[47:12]

VA[47:21]

16MB
granularity

hash 1

hash 2VA

is_synonym & &&

1

1

1

1hash 2

hash 1

Figure 3. A synonym filter is composed of two Bloom filters each with
different granularities. Each filter uses two hash functions. The synonym
filter only returns true, thus a synonym candidate when all four bits are set
to one.

mapping to track synonyms. It is guaranteed that a single
address (either ASID+VA or PA) is used for a physical
cacheline in the entire cache hierarchy. With such a single
address for each memory block, cachelines are kept coherent
by the HW coherence mechanism either with ASID+VA
or PA, eliminating the synonym problem entirely. With the
hybrid address design, as long as the synonym filter can
identify all synonym pages, its correctness is guaranteed.
The pages used for direct memory access (DMA) by I/O
devices are also marked as synonym pages, and they are
cached in physical address.
Page Deallocation and Remap: Virtual page mapping or
status changes may require selective flushing of cachelines
addressed in ASID+VA. If the synonym status changes from
non-synonym (private) to synonym (shared), the cachelines
in the affected page must be flushed from the cache hierar-
chy, although such changes will be rare. The deallocation of
a physical page from a virtual page or remapping of a virtual
page also requires the invalidation or flushing of cachelines
in the page.

On a modification of a virtual mapping, current sys-
tems issue a TLB shootdown which is broadcasted via
inter-processor interrupts to all cores. In the hybrid virtual
caching, depending on the previous state of the mapping
(synonym or non-synonym), the shootdown can be directed
to the per core TLB structure (synonym), or the per core
TLBs and shared delayed TLB (non-synonym).
Permission Support: For permission enforcement, each
cacheline holds the permission bits which are set through
the delayed translation for non-synonym pages. For synonym
pages, the TLB translation will check the permission status
before cache accesses. For non-synonym pages, permission
violation such as writes to a read-only (r/o) page will
raise an exception. When the permission of a non-synonym
page changes, the permission bits in cached copies must be
updated along with the flush of the delayed translation TLB
entry for the page.

B. Hash-based Sharing Detection

The proposed synonym detection uses Bloom filters [11]
to detect synonym pages efficiently with a short access

latency and low power consumption. Each address space
has a set of two Bloom filters maintained by the operating
system. The Bloom filters are stored in the OS memory
region, and for each context switch, the hardware registers
for the starting addresses of the Bloom filters must be set
by the OS, along with the conventional page table pointer.
Setting the filter registers will invoke the core to read the
two Bloom filters from the memory and store them in the
on-chip filter storage of the core. Woo et al. proposed using
Bloom Filters to filter out synonyms to reduce extra cache
lookups to find synonyms, with a pure hardware-oriented
mechanism [13]. This study uses a HW and SW-combined
approach.

The proposed scheme uses two filters for each address
space to reduce false positives as shown in Figure 3. The
first coarse-grained filter checks the synonym region at
16MB granularity, and the second fine-grained filter checks
at 32KB granularity. The synonym filter reports a synonym
candidate only when both filters are set to true for the
corresponding entry for an address. To further reduce false-
positive, we used two hash functions for each Bloom filter
as shown in the figure.

The Bloom filters are cleared during the creation of an
address space (process). When the operating system changes
the status of a virtual page to a shared one (synonym), it must
add the page to the coarse and fine-grained Bloom filters.
Updating the Bloom filter pair will require synchronizing all
cores running the same ASID. Such a status change is rare,
and it uses the same mechanism as TLB shootdowns. Note
that conventional systems also require TLB shootdowns
to synchronize the TLB entries on page table updates.
Changing the status of a page from the synonym state to
the non-synonym state does not clear the Bloom filters,
since multiple pages may share the same bit. However,
such changes are rare, and if such changes exceed a certain
threshold and generate too many false positives, the OS can
reconstruct the filter set for the process.

In this paper, we use a 1K-bit Bloom filter for both
32KB and 16MB filters. We chose the 32KB granularity,
since shared pages are commonly allocated in 8 consecutive
4KB pages. The hash functions partition the address bits
(trimmed by 15 bits or 24 bits according to the Bloom filter
granularity) into two parts. One function partitions them by
1:1 ratio and the other by 1:2 ratio. For each hash function,
5 bits hash result is generated from a partition by exclusive-
oring the bits in the partition. The two 5-bits from the
partitions are concatenated into 10 bits, which is the index
bit for the filter.

C. Performance of Synonym Filter

Methodology: In this section, we use a trace-based model
to evaluate a long execution of applications with a large
amount of synonym pages. We used the Pin tool [19]
and implemented our synonym filter, TLBs, and delayed



Table II
FALSE POSITIVE RATES, TLB ACCESS AND MISS REDUCTION

false positive TLB access total TLB
rates reduction miss reduction

ferret 0.000756% 99.1% 20.4%
postgres 0.427410% 83.7% -6.1%
SpecJBB 0.000019% 99.9% 42.6%
firefox 0.521944% 99.4% 63.2%
apache 0.000000% 99.5% 69.7%

translation TLBs (delayed TLBs). We also modeled the
cache hierarchy to feed only cache misses into the delayed
translation. In the model, false positives are also inserted
into the TLBs. We experimented on a system with Linux
kernel 3.12 and glibc 2.19.

In addition to the Pin tool, we identified workloads with
read-write sharing by extracting and analyzing system call
traces. We investigated the five applications with synonyms
shown in Table I. The baseline conventional TLBs have a
64-entry L1 TLB backed by a 1024-entry 8-way L2 TLB.
Compared to the baseline, the synonym TLB is a 64-entry
4-way associative single level TLB. Our delayed TLB is
a 1024-entry 8-way TLB for the results in this section, to
have the same overall TLB area as the conventional system.
The cache is an 8MB shared cache, and the simulations
of the workloads are multi-programmed or multithreaded
(depending on each workload).
Results: Table II presents the effectiveness of the proposed
synonym filter with two 1K-entry Bloom filters. The second
column shows false-positive access rates, due to the hash
conflicts in the Bloom filters. Among all accesses, such false-
positive accesses are very small, less than 0.5%. The third
column shows the reduction of TLB accesses by bypassing
TLBs for non-synonym pages. Except for postgres which
has a significant amount of shared pages, all the other
applications can reduce TLB accesses by 99%, reducing
the power consumption significantly. Even for postgres
with 66% of shared memory, the TLB access reduction is
significant with an 84% decrease.

The fourth column shows the TLB miss reduction
achieved by the synonym TLB and delayed TLB, compared
to the baseline system with two levels of TLBs. Even though
the total size of TLBs is equal in the proposed system and
the baseline, the proposed system can significantly reduce
the TLB misses by up-to 70% (apache). This is due
to the large underlying last-level cache which filters out
unnecessary translation requests for resident cachelines. The
reason for the miss increase in postgres is due to the
false positives and smaller 64-entry TLB for the synonym
candidates compared to the conventional TLBs.

In this section, we investigated only the applications with
shared pages, and even for such adverse applications to the
proposed scheme, the results show that the synonym filter-
ing and delayed translation work effectively. More diverse
application results will be presented in Section 6.

0
10
20
30
40
50
60
70
80
90

100
110

N
or

m
al

iz
ed

 M
P

K
I (

%
) 1k ent. 2k ent. 4k ent. 8k ent. 16k ent. 32k ent. 64k ent.

GUPS Milc Mcf Xalancbmk Tigr Omnetpp Soplex 

Figure 4. Normalized TLB miss rates (MPKI) for different TLB sizes

D. Efficient Support for Read-only Sharing

As shown in the previous section, synonym pages are not
common. One possible source of synonyms not evaluated in
the previous section is content-based memory sharing. If a
large number of memory pages become synonym pages due
to content-based memory sharing, the synonym filters will
become less effective, resulting in a significant increase of
physically-addressed pages in caches.

However, exploiting the read-only property of such
content-based memory sharing, we propose a mechanism to
eliminate the need for physical addresses for the read-only
(r/o) shared pages. Even if r/o synonyms exist in caches, r/o
permission prevents coherence problems of r/o synonyms.
As discussed in the previous section, cache tags are extended
with permission bits. When the hypervisor or OS sets a page
to be a content-shared page, it changes the status to read-
only. The r/o permission bit is carried in all copies of the
cacheline, and if a write operation occurs, a permission fault
is raised. Upon receiving a permission fault, the hypervisor
or OS assigns a new physical memory page, copies the
content of the r/o shared page to the newly assigned page,
and changes the permission of the new page to r/w, making
it a private r/w page.

When the status of a page changes from non-synonym
to r/o shared, all the cachelines of the page must be either
invalidated or their cacheline status must be changed to read-
only. However, such status changes do not trigger updates of
synonym filters, and do not degrade the filtering capability.

IV. SCALABLE DELAYED TRANSLATION

This section presents the limitation of page-based delayed
TLBs, and proposes many segment translation architecture
to support many variable length segments.

A. Variable Length Segment Translation

1) Delayed TLB translation: For non-synonym pages,
address translation occurs on LLC misses. Delayed address
translation can use conventional page-based translation with
a TLB lookup on each LLC miss. With large on-chip caches,
cache-resident data will not cause TLB misses, even if their
entries are not in the TLBs. However, such fixed granularity
page-based translation, delayed TLBs, will eventually reach
its limit as the memory working sets of applications increase.
Figure 4 shows the limitation of fixed granularity pages for
delayed translation. TLB requests are filtered by a 2MB



LLC. Only LLC misses access the delayed TLB ranging
from 1K to 32K entries. For GUPS, mcf, and milc, the
increase in TLB size does not reduce the number of misses
effectively, as their page working sets are much larger than
the delayed TLB capacity. Even with a large 32K-entry TLB,
32 times larger than the current 1K-entry L2 TLBs, there are
significant TLB misses per 1K instructions.

As the memory requirements for big memory applications
increase, the delayed translation must also scale with the
requirements. On-chip caches can filter out some translation
requests with the hybrid virtual caching, but eventually,
the translation efficiency must be improved to support big
memory applications. Traditional fixed page-based transla-
tion cannot provide such scalability of address translation.

2) Prior Segment Translation Approaches: This section
discusses the prior segment translation approaches for con-
ventional physically-addressed caches. To mitigate the lim-
itation of the current TLB-based translation, direct segment
was proposed as an alternative to page-based translation [1].
In the direct segment, each process has a set of segment-
supporting registers: base, limit and offset. Using the
registers, a segment maps a variable length virtual memory
partition to a contiguous physical memory region. With such
a low complexity, a single segment support can be easily
added to the existing page-based systems to allow static
memory allocation of large contiguous memory. If the virtual
address lies outside the segment region, traditional paging
is used.

Redundant memory mapping (RMM) extends on the
limitation of a single direct segment, supporting multiple
concurrent segments for each process [12]. The operating
system can allocate multiple contiguous memory regions
with variable lengths for each process, allowing flexible
memory management. Traditional paging is used redun-
dantly to RMM. Since the address translation is still on
the critical core-to-L1 path, RMM limits the number of
segments to 32 operating at the latency of seven cycles,
equivalent to the L2 TLB latency.

B. Many Segments for Delayed Translation

Delayed translation can improve segment-based trans-
lation by supporting 1000s of segments efficiently. Such
many segment translation can provide the operating system
with the improved flexibility and efficiency of memory
management.
Potential benefits of many segments: Table III presents the
segment counts for each application, including the segment
counts produced in RMM [12]. Our analysis uses a different
memory allocator library, glibc instead of customized
TCmalloc used by RMM, which is the main cause of the
difference in segment counts. In the table, some applications
use few segments while some other applications use a
very large number of segments. Memcached for example,

Table III
MAXIMUM NUMBER OF SEGMENTS IN USE BY EACH APPLICATION,

RMM MPKI, AND MEMORY UTILIZATION

Bench. RMM [12] Reproduced MPKI Usage(%)
astar 33 16 0 96.5
mcf 28 4 0 72.5
omnetpp 27 106 0.02 99
cactus. 70 56 0 83.2
GemsFD. 61 143 0 100
xalancbmk N/A 244 0.13 96.5
canneal 46 22 0 84.7
stream. 32 16 0 24.7
mummer 61 3 0 100
tigr 167 90 22.93 99.5
memcached 86 839 0.08 100
NPB:CG 95 5 0 100
gups 62 7 0 99.9

requests for more memory on demand (in 64MB requests)
instead of provisioning large chunks of memory.

Using a limited 32 segments may not be able to pro-
vide efficient translation when the segments are thrashing
in RMM. Workloads such as tigr, xalancmbmk and
memcached caused considerable MPKIs (segment misses
per 1K instructions) for 32 segments in our experiments. If
a segment miss occurs, either a SW or HW segment walker
must fill the segment in RMM.

Another inherent issue of segment-based translation is the
low utilization of eagerly allocated memory regions. Instead
of the widely used demand paging, segment translation
uses eager allocation, which allocates contiguous memory
segments immediately on application request. Eager alloca-
tion increases the contiguity of allocated memory to reduce
the number of resulting segments, but may cause internal
fragmentation. The final column of Table III shows the
utilization of segmented memory regions. Although many
workloads use most of the allocated regions, four appli-
cations do not utilize 17-75% of their allocated memory.
Reservation-based allocation can be used to handle such
cases by reserving a large contiguous segment, but internally
dividing the segment into smaller segments [20]. Only on
actual accesses, the smaller sub-segments are actually allo-
cated to the process. Adjacent sub-segments can be merged
as they are promoted from reserved to allocated. However,
reservation-based allocation requires more segments to sup-
port the reservation functionality.

C. Many Segment Architecture

Figure 5 presents the overall translation flow of the
proposed many segment architecture after an LLC miss
occurs. The translation mechanism consists of segment table,
index cache, and segment cache. Figure 6 shows the internal
organization of segment table and index cache.
Segment Table: The OS maintains a system-wide in-
memory segment table that holds all the segments allocated
by the OS. Each segment entry has the starting ASID+VA
address(base), limit, and offset. The table is indexed



ASID+VA PA

hit
miss

Segment CacheLLC Miss Memory Access

Segment Table
Segment ID

Index Cache 

Traverse Index Tree 

Figure 5. Scalable delayed translation: The overall translation flow from
ASID+VA to PA

Index Tree in memory

Virtual AddressASID

Physical Address <40>

Search Index <43>

Index Cache Search Index < K5
Root node
K1

Node B
K4

Node A
K2 K3

K5
Node C   

K6
Node D   

K7
Node E   

Segment ID = SID1

SID1

Offset <21>

Root
Node A
Node B
Node C   

K1A B
DK2 K3C E

K4F G
K5SID1 SID2

Segment Table

Miss

Fill

Base Offset Limit

Figure 6. Organization of segment table and index cache

by the segment-ID and holds 2K segment entries, as shown
in Figure 6. A hardware structure, segment table, mirrors
the in-memory segment table. If an incoming ASID+VA
address is not covered by the segments in the segment table,
an interrupt occurs and the operating system fills the table
entry. However, segment misses occur only for cold misses,
as the size of HW table is equal to the in-memory segment
table size to simplify implementation.
Index Cache: One of the key design issues is to find the
corresponding segment for an incoming ASID+VA address
from the segment table efficiently. Unlike TLBs with fixed
mapping granularity, segments have varying sizes which
complicate the lookup mechanism. A naive way of searching
for a segment is to serially search all entries, which look
ups all table entries in the worst case. Since the translation
latency is important, we propose a hardware-based efficient
search mechanism backed by the operating system.

The operating system maintains a B-tree indexed and
sorted by the ASID+VA for all segments in the segment
table, called an index tree. Each B-tree node has a key to
compare the incoming address, and pointers to the nodes of
the next level (the value). The resulting value, which may
exist on the leaf or on intermediate nodes, is an index to the
segment table, or the segment-ID. Thus, a traversal through
the index tree yields the segment-ID of the segment that the
incoming address belongs to.

For every LLC miss, the index tree must be accessed
to find the segment-ID which points to the corresponding
segment in the segment table. Since accessing the in-memory
index tree for every LLC miss is not feasible with long

0
10
20
30
40
50
60
70
80
90

100

H
it 

ra
te

 (
%

)

multi
multi-avg.
single
single-avg.

128B
256B

512B
1KB

2KB
0
10
20
30
40
50
60
70
80
90
100

H
it 

ra
te

 (
%

)

1024 entry
2048 entry

8KB
16KB

32KB
64KB

(a) (b)

Figure 7. Index cache size sensitivity study. (a) shows index cache hit
rate for actual workloads. (b) shows synthetic worst case benchmark.

latencies, a hardware cache for the index tree, index cache,
stores recently accessed entries from the index tree. For
each LLC miss, in the worst case, the index cache must
be accessed by the number of the tree depth to reach the
leaf node containing the requested segment-ID.

The index cache is a regular cache of 64 byte blocks ad-
dressed by physical address. The index tree nodes are cache
block aligned. Each node contains six keys (starting address
of a segment) and seven values (pointer to the next level
node, or the segment-ID). 1024 and 2048 segment entries
can fit in an index tree with depth of four, when spanned
by a factor of seven (seven values). A hardware walker will
bring in a cache block from the memory and will compare
the incoming address to all six keys in parallel. The leftmost
pointer which satisfies the comparison (address>key) will be
used for the next node lookup.

Segment Cache (SC): To hide the latency of accessing
the index cache and segment table, the delayed translation
can be done simultaneously with LLC accesses. Although
the parallel accesses to the delayed translation and LLCs
can improve the performance, such parallel accesses can
increase the energy consumption for delayed translation
unnecessarily. To reduce the energy overhead, an alternative
way is to access delayed translation serially only after LLC
misses. However, to further reduce the latency overhead of
serial delayed translation, this architecture adds a small 128-
entry segment cache. The segment cache is a simple TLB-
like component with 2MB granularity. For an SC miss, the
translation results from the segment table will be used to fill
the fixed granularity SC entry for next accesses.

Translation Flow: As shown in Figure 5, the incoming
address from an LLC miss checks the 2MB granularity
segment cache (SC) first. If it hits SC, the translation is
completed. For a miss, the translation traverses the index tree
by looking up tree nodes. The segment-ID resulting from the
index tree traversal is used to index the HW segment table
to find the segment information. Using the segment entry,
the address is checked against the base and limit values of
the segment. Finally, the offset value is used to translate the
incoming ASID+VA to PA.



D. Index Cache Efficiency

We conducted three sensitivity studies on the index cache
size. The first study investigates single-threaded applications,
and the second one for four threads of applications modeling
a multi-programmed quad-core system. To stress the index
cache, we artificially broke a segment into 10 segments,
adding the effect of external fragmentation. Without the
added external fragmentation effect, a smaller size of index
cache will be good enough for many real applications. The
last study investigates the worst case scenario, where all
accesses are randomly issued. The results from the three
studies are shown in Figure 7. The index cache is an 8-way
associative cache ranging in size as labeled in the x-axis.

The single and multi-core application simulations were
conducted using the Pin-based simulation of workloads
described in Section VI-A. The multi-core evaluation was
conducted by interleaving four Pin traces (quad core sys-
tem). Ten applications causing most misses were chosen,
and a total of 210 quad-core mixes were generated and
executed. The lighter lines show the miss curves of single
thread applications, and the darker lines show multi-threaded
applications. The multi-threaded workloads cause more con-
flict misses compared to single applications, thus the curves
show slightly more misses for the same index cache size.
The access patterns of real applications exhibit locality, thus
the index cache does not suffer misses even with a modestly
sized index cache of 8KB.

For the worst case, we distributed the physical address
space of 40 bits to 1024 or 2048 segment entries equally.
We inserted all entries into the index tree, and simulated
one million random accesses to the entire physical address
space. This workload shows no spatial locality, and is thus
the absolute worst case. Even in this worst case, 32KB
index cache can almost eliminate index cache misses for
1024 segment entries, and provide 75.5% hit rates for 2048
segment entries.

Using CACTI 6.5 [18], we estimated the access latency
of the index cache. For a 3.4GHz machine, both 32KB and
64KB 8-way index cache have the latency of 3 cycles. Also
the access latency of the segment table of 2048 entries is
seven cycles 3. Thus we can estimate that four accesses or
less to the index cache (four level index-tree) followed by
an access to the segment table is about 19 cycles. Based
on the analysis, we assume that the delayed many-segment
translation takes 20 cycle.

To support 2048 segments, the segment table size is about
48KB (base, offset, length), and the index cache size is
32KB. Compared to the LLC size, the extra 80KB structure
does not add a significant area overhead. Furthermore, a
multi-core processor needs to have only one index cache
and segment table shared by multiple cores.

3The segment table is configured to use low standby power configuration.
All others use the high performance configuration

gVA

OS induced synonym

Hypervisor
induced 
synonym

gPA MA

Figure 8. Difference of synonyms incurred by the OS and hypervisor

V. VIRTUALIZATION SUPPORT

The overall translation architecture for virtualized systems
is similar to non-virtualized systems. For non-synonym
pages, the ASID must include the virtual machine identifier
(VMID) in addition to the process ID within a VM. With
the ASID extension, a VM cannot access virtually-addressed
cachelines of another VM, since their ASIDs do not match.

A. Extending Synonym Detection

In virtualized systems, a guest virtual address (gVA) is
translated to a guest physical address (gPA), and the guest
physical address is translated to a machine address (MA).
The guest operating system maintains the mapping between
the guest virtual and guest physical address spaces, and
the hypervisor maintains the mapping between the guest
physical and machine address spaces. In non-virtualized
systems, the synonym filters are maintained by the operating
system. However, for virtualized systems, both the OS
and hypervisor can cause synonyms for memory pages.
In addition to OS-induced synonyms, the hypervisor can
make two different pages in the same VM or different VMs
share a physical page. Figure 8 illustrates how two types of
synonyms differ.

To address the additional hypervisor-induced synonyms,
the synonym filters are updated both by the OS and hypervi-
sor. Similarly to the two dimensional page walks supported
by recent x86 architectures, the OS and hypervisor maintain
different filters, the guest and host filters. For a guest
process context switch, the guest OS switches the guest
filter as in a native system. For a VM context switch, the
hypervisor switches the host filter. When looking up the
synonym filter, both filters are looked up. If either one of
the filters reports a filter hit, the accessed page is identified
as a synonym candidate. The subsequent flow for synonym
and non-synonym pages are identical to native systems.

One of the challenges for the synonym detection is that
the filters must be set in gVA for both the guest and host
Bloom filters, since both filters are looked up using the
guest virtual address. When a guest virtual page becomes a
synonym due to a hypervisor-induced sharing, the hypervisor
is responsible for setting the host filters by the guest virtual
address.



When the hypervisor changes a guest physical page to
a synonym page (shared page), it traces the corresponding
guest virtual addresses in the virtual machine, and updates
the host filter content. To facilitate the process, the hypervi-
sor may maintain an inverse mapping from gPA to gVA for
each virtual machine.

On a special case where the guest OS changes the
mapping of a guest virtual page from a private guest physical
frame to a hypervisor-induced shared physical frame, the
guest is not aware of the guest physical frame being shared
by the hypervisor. Thus, it is the responsibility of the
hypervisor to mark the newly mapped gVA as a synonym.
Our solution is simple for the case. For such remapping of a
guest virtual page, the guest OS must flush the corresponding
cachelines anyways, regardless of the hypervisor-induced
synonym problem. Access to the newly mapped page causes
an LLC miss, causing delayed translation. The address
will be identified as a synonym address during the two
dimensional walk, and an exception will be raised for the
hypervisor to handle the newly identified synonym.

B. Segment-based 2D Address Translation

The current full virtualization of the x86 architecture uses
two separate page tables in the guest OS and hypervisor to
map the virtual memory to the actual system memory [21].
A hardware two-dimensional page walker walks both guest
and hypervisor page tables and fills the TLB with the
translation from gVA to MA. One of the benefits of the
hybrid virtual caching for virtualized systems is that it hides
the cost of the two-dimensional translation. By removing
the translation from the critical core-to-L1 path, much of
the delayed translation can be filtered by LLC hits. For the
proposed hybrid virtual caching, a similar 2D page walker
will be used for the page-based delayed translation, which
will walk the guest and host page tables for translation cache
misses.

To support full virtualization for many segment transla-
tion, segment translation must be supported for guest and
host segments, which are governed by the guest OS and
hypervisor respectively. The guest OS can update only the
guest segments. Full virtualization incurs two overheads if
it is done before L1 cache accesses as in RMM [12]. First,
segment-based translation needs to be done twice for guest
and host segments. The two steps are required because
the hypervisor cannot guarantee to allocate equally sized
physical segments for every guest OS segment allocation
requests, and may serve a guest OS segment allocation
with multiple host segments. Second, the per-core segments
limited in number are further divided into guest and host
segments, reducing the number of segments available for
each user process.

The proposed many segment translation does not suffer
from the limited number of segments for guest and host
segments. The additional latency incurred by the two di-

Table IV
SIMULATED BASELINE SYSTEM CONFIGURATIONS

Parameter Value

Processor

Out-of-order x86 ISA, 3.4GHz
128-entry ROB, 80-entry LSQ
5-issue width, 4-commit width
36-issue queue, 6-ALU, 6FPU

Branch Predictor 4K entry BTB, 1K entry RAS
Two-level branch predictor

L1 I/D Cache 2/4-cycles, 32KB, 4-way, 64B block
L2 Cache 6-cycles, 256KB, 8-way, 64B block
L3 Cache 27-cycles, 2MB, 16-way, 64B block
TLB L1 1-cycles 64 entry, 4-way, non-blocking
TLB L2 7-cycles 1024 entry, 8-way, non-blocking

Memory 4GB DDR3-1600, 800MHz,
1 memory controller

mensional translation can be overlapped with LLC accesses
to mitigate additional latency at the expense of minor extra
energy consumption. However, in this study, to reduce en-
ergy consumption, we employ serial accesses to the LLC and
segment translation. To further reduce the additional latency,
a 128-entry segment cache (SC) is used to store direct
translation from gVA to MA for 2MB regions, skipping the
gPA.

VI. EXPERIMENTAL RESULTS

A. Methodology

To validate the performance of the proposed system, we
used MARSSx86 [22] + DRAMSim2 [23] which is a cycle
accurate full system simulator running a linux image, with
an accurate DRAM simulator. Table IV shows the simulated
system configuration. For the baseline system, we modeled
the TLBs after the Haswell architecture of Intel [24]. The
evaluated experiments run SPECCPU2006, Graph500 (sized
22), NPB benchmarks (C sizes, and B size for NPB_DC),
and tigr of the BioBenchmark suite [25]. Additionally we
conducted experiments of GUPS (with size 30), a random
access benchmark. One billion instructions were simulated
for evaluation. However, for tigr we had to reduce the
number of instructions executed to 500 million, due to the
elongated simulation time resulting from a very low IPC.

B. Performance

Native Systems: In Figure 9, the first experimental results
show the performance improvement of delayed translation
in non-virtualized systems. The results were normalized to
the baseline system. The evaluated configurations are the
baseline, fixed granularity delayed TLB translations varying
the TLB size from 1K to 32K entries (henceforth labeled
as delayed TLB), the delayed many-segment translation
(without and with 128-entry segment cache), and finally
the ideal TLB performance. The ideal TLB depicts the
potential performance of a system without TLB misses. The
graph is divided into three parts by the dotted vertical line.



80

90

100

110

120

130

N
or

m
al

iz
ed

 IP
C

 (
%

)

1k entry 2k entry 4k entry 8k entry 16k entry 32k entry

segment segment + SC ideal TLB

GUPS (143.16, 143.22, 143.35)
tigr (168.42, 179.36,181.20)

bz
ip2

 

 N
PB_D

C 

 g
am

es
s 

 p
er

lbe
nc

h 

 ca
ctu

sA
DM

 

 a
sta

r 

 N
PB_L

U 

 g
ro

m
ac

s 

 m
ilc

 

 N
PB_C

G 
 g

cc
 

 sj
en

g 

 xa
lan

cb
m

k 

 h
m

m
er

 

 so
ple

x 
 m

cf 

 o
m

ne
tp

p 

 sp
hin

x3
 

 G
UPS 

 tig
r 

 G
eo

m
ea

n 

 G
eo

m
ea

n.
all

 

Figure 9. Normalized performance of our proposed system to the baseline system. Workloads on the left are workloads which benefit from delayed
translation. The results in the center show workloads in which fixed granularity delayed translation causes overhead but improves as more delayed TLB
entries are provided.

0
20
40
60
80

100
120
140
160
180
200

N
or

m
al

iz
ed

 IP
C

(%
) full virt 1k entry 2k entry 4k entry

segment + SC ideal

m
ilc

 

 N
PB_C

G 
 g

cc
 

 sj
en

g 

 xa
lan

cb
m

k 

 h
m

m
er

 

 so
ple

x 

 b
zip

2 

 N
PB_D

C 

 g
am

es
s 

 m
cf 

 p
er

lbe
nc

h 

 ca
ctu

sA
DM

 

 a
sta

r 

 N
PB_L

U 

 g
ro

m
ac

s 

 o
m

ne
tp

p 

 sp
hin

x3
 

 G
UPS 

 tig
r 

 G
eo

m
ea

n 

 G
eo

m
ea

n.
all

 

Figure 10. Performance of full-virtualized baseline and delayed translation
normalized to the baseline native system

For brevity, only the workloads sensitive to the different
configurations are plotted. The remaining workloads are
aggregated in the Geomean.all plot.

The leftmost part of the figure shows the workloads which
benefit directly from delayed translation of virtual caching.
These workloads efficiently utilize the cache hierarchy, and
delayed translation effectively removes unnecessary trans-
lation requests which occurred in the baseline system. The
performance of these workloads is higher than the baseline,
and consistent for different sizes of delayed TLB, as the 1K
TLB can absorb most of the delayed translation requests.

In the applications of the center part of the figure, a naive
TLB-based delayed translation causes performance reduc-
tion. These applications exhibit significant LLC misses, and
delayed translation adds extra latencies for each miss. Most
of the applications in the center part suffer from a certain
performance reduction with the delayed TLBs, compared to
the baseline. The reason for performance degradation is that
the delayed TLB miss handling can take longer latencies
than the conventional TLB miss handling in our conservative
model of delayed TLBs. In conventional TLBs, a TLB miss
handler (page table walker) can access L1, L2, and L3
caches to fetch the required page table entries during page
walks. Among the accesses, a significant number of accesses
are L1 or L2 cache hits. However, in the delayed TLBs,
we conservatively assume that the page table walker can
access only the LLC (L3), since the TLB miss handler is

located along with the LLC miss handler. Therefore, even if
the TLB miss rates are equal in the baseline and delayed
1KB TLBs, the performance degradation can occur with
the delayed TLBs. A simple remedy for this problem is
to use a translation caching scheme which caches non-leaf
tree entries of multi-level page table for delayed translation.
For the performance comparison in this section favoring the
baseline, we did not evaluate the translation caching support
for the delayed TLBs.

For a subset of workloads such as sjeng, xalancbmk,
hmmer, soplex, omnetpp, and sphinx, the perfor-
mance is improved for larger delayed translation TLBs.
However, milc, mcf, and GUPS still suffer from perfor-
mance drops, as the larger TLBs cannot cover the working
sets. The results are consistent to the Pin-based study pre-
sented in Figure 4. For the workloads with high performance
drops even with large TLBs, our proposed many segment
translation shows its potential. Many segment translation
with a small segment cache (SC) can almost eliminate
the cost of delayed translation. Across all the workloads
evaluated, the performance with many segment translation
with SC matches the performance of ideal translation. For
GUPS and tigr, the performance improvements are 43%
and 79% compared to the baseline. On average, the many
segment translation scheme improves the performance of
selected workloads by 7.9% and many-segment with SC
shows an average of 10.7% performance gain. Although not
shown in the figure, parallel accesses to the many segment
translation and LLCs can provide near ideal performance for
all the applications, 0.1% less than the ideal runs. For the
selected workloads, parallel accesses achieve an average of
10.8% performance gain compared to the baseline.

Delayed TLB exploits the LLC to filter away unnecessary
TLB accesses, improving TLB caching efficiency. TLB miss
reduction from the baseline 1K-entry TLB to the delayed
TLB of 1K-entry is 99.3% on average. In other words,
99.3% of L2 TLB misses on conventional systems can be
filtered away if the translation is delayed to after an LLC
miss. GUPS, tigr, and mcf have lower TLB reductions of



0
20
40
60
80

100
120
140
160
180

N
or

m
al

iz
ed

 E
ne

rg
y(

%
) baseline 1k entry 2k entry 4k entry

segments segments + SC

ga
m

es
s  

gr
om

ac
s  

bz
ip2

  

NPB_D
C  

pe
rlb

en
ch

  

sje
ng

  

as
ta

r  

hm
m

er
  
gc

c  

ca
ctu

sA
DM

  

NPB_C
G  

NPB_L
U  

sp
hin

x3
  

tig
r  

om
ne

tp
p 

 
m

cf 
 

xa
lan

cb
m

k  

m
ilc

  

so
ple

x  

GUPS  

Geo
m

ea
n 

 

Geo
m

ea
n.

all
 

Figure 11. Normalized power consumption of delayed translation over
baseline system (power consumption by translation components)

45.5%, 61%, and 76.4%, respectively. The workloads above
show random access patterns that are not effectively cached
in the LLC, resulting in lower TLB reductions.
Full Virtualization: The second experimentation is to
evaluate the performance of fully virtualized systems. We
modeled an x86-like fully virtualized system, denoted as
full virt, and delayed TLB translation which does two
dimensional page walks on a miss with TLB sizes ranging
from 1K to 4K entries. The 2D many segment translation is
denoted as segment + SC. The ideal TLB performance
is also shown. The results are normalized to the native non-
virtualized system performance.

Full virtualization incurs page walk overheads as up-to
24 memory accesses are required, instead of four in native
systems. To shorten the page walk latency, commercial
architectures support translation caches to cache non-leaf
translation entries of multi-level page tables [26], [21]. For
the experiment in this work, we have added a page walk
cache (PWC) to speed up the page table walks for the full
virt system. However, with the conservative assumption
on our own technique, PWC is not used for delayed TLB
translation.

Figure 10 shows the performance result of virtualized
systems. The fully virtualized system shows significant
performance drops due to the overhead of two-dimensional
page walks. Delayed TLB improves performance, and our
many segment translation (with 128-entry segment cache)
shows the best performance, close to the ideal system. As
with the native results, the delayed TLB shows a slight
performance improvement with more TLB entries for some
workloads, while other workloads such as milc, GUPS
and mcf do not benefit from larger TLBs. Many segment
translation overcomes such limitations. On average, many
segment translation performs 18.5% better than the current
fully virtualized architecture for all workloads, and 31.6%
better for the selected workloads.

C. Energy Consumption

Figure 11 presents the dynamic and static power consump-
tion of translation components of proposed mechanisms
normalized to the baseline TLB system. The power models
are generated from CACTI 6.5 [18]. Delayed translation
with TLBs and many segments can achieve reduction in

overall power consumption, because the power consumed
for accessing the synonym filters4 is lower than that for
accessing L1 TLBs, and the number of accesses to the
delayed TLB is smaller than that to conventional TLBs,
because most of accesses are filtered by the LLC.

Delayed many segment translation generally has lower
power consumption compared to the delayed TLB con-
figurations due to the higher static power consumption of
larger delayed TLBs. The delayed TLB structures that are
larger than 2K entries consume more static power compared
to the index cache and segment table, resulting in higher
overall power consumption over the delayed many segment
translation. However, for the workloads with high LLC
misses, delayed many segment without SC consumes more
power than even the baseline system.

Using a segment cache reduces the power consumption
significantly, as it reduces accesses to the index cache
and segment table, and also achieves modest performance
gains as observed in Figure 9. The segment cache miss
rate is 0.05%, effectively buffering multiple lookups to the
index cache and segment table. One exception is GUPS,
which incurs a high segment cache miss rate (of 96.5%), as
the workload has inherently random access patterns. Other
noticeably high miss rates were observed in tigr, NPB_LU,
and NPB_CG with miss rates of 31.3%, 12.4%, and 10.8%,
respectively.
Summary: For many common workloads with low LLC
miss rates, hybrid virtual caching can reduce the transla-
tion power consumption significantly, as it can eliminate
most of the conventional TLB accesses. It can improve the
performance too, if the LLC can contain cachelines which
could have missed the conventional TLBs. However, for the
applications with high LLC misses, the many segment trans-
lation can increase the power consumption due to increased
accesses to the index cache and segment table. However,
although translation power consumption increases for such
cases, the performance of the applications can potentially
improve significantly with a much more effective translation
mechanism than the conventional system, if the traditional
TLBs cannot provide a sufficient translation coverage for
the applications. The aforementioned two scenarios show
the main advantage of the proposed techniques. The hybrid
virtual caching can bring either power, performance, or both
benefits by virtual caching and delayed translation depending
on application TLB and LLC miss behaviors.

VII. CONCLUSION

This study proposed a new memory virtualization archi-
tecture with hybrid virtual caching. The key component

4 Due to restrictions of the CACTI system, the modeled synonym
filter reads in byte granularity instead of bits granularity which causes
over estimation of dynamic power per filter access. We expect optimized
hardware implementation to be able to conserve more power per access by
accessing the synonym filter by bits.



enabling the efficient virtual caching is the synonym filter
which can identify synonym pages efficiently with few false
positives. With the synonym filter, a physical cacheline can
exist in caches only with a single name either by its physical
address (synonym case) or by its ASID+VA (non-synonym
case). By extending hybrid virtual caching to the entire cache
hierarchy, the proposed mechanism reduces both energy con-
sumption and translation latency. However, as the memory
requirements increase, even delayed translation with page-
based TLBs cannot scale effectively. This paper proposed a
many segment translation architecture for better translation
scalability and more flexible memory allocation by the OS.

ACKNOWLEDGMENTS
This work was supported by the National Research Foun-

dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) (No. 2013R1A2A2A01015514)

REFERENCES

[1] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.
Swift, “Efficient Virtual Memory for Big Memory Servers,”
in Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA), Jun 2013.

[2] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee,
“CoLT: Coalesced Large-Reach TLBs,” in Proceedings of
the 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2012.

[3] A. Basu, M. D. Hill, and M. M. Swift, “Reducing mem-
ory reference energy with opportunistic virtual caching,” in
Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA), 2012.

[4] A. Sodani, “Race to exascale: Challenges and opportunities,”
MICRO 2011 Keynote.

[5] J. R. Goodman, “Coherency for multiprocessor virtual address
caches,” in Proceedings of the second International Confer-
ence on Architectual Support for Programming Languages
and Operating Systems (ASPLOS), 1987.

[6] W. H. Wang, J. L. Baer, and H. M. Levy, “Organization and
performance of a two-level virtual-real cache hierarchy,” in
Proceedings of the 16th Annual International Symposium on
Computer Architecture (ISCA), 1989.

[7] S. Kaxiras and A. Ros, “A new perspective for efficient
virtual-cache coherence,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA),
2013.

[8] B. Jacob and T. Mudge, “Software-managed address transla-
tion,” in Proceedings of the IEEE 3rd Symposium on High-
Performance Computer Architecture (HPCA), 1997.

[9] B. Jacob and T. Mudge, “Uniprocessor Virtual Memory
Without TLBs,” IEEE Trans. Comput., vol. 50, no. 5, pp.
482–499, May 2001.

[10] B. Jacob, S. Ng, and D. Wang, Memory systems: cache,
DRAM, disk. Morgan Kaufmann Publishers, 2008.

[11] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–
426, Jul. 1970.

[12] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill,
K. S. McKinley, M. Nemirovsky, M. M. Swift, and O. Unsal,
“Redundant Memory Mappings for Fast Access to Large
Memories,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), Jun 2013.

[13] D. H. Woo, M. Ghosh, E. Ozer, S. Biles, and H.-H. S. Lee,
“Reducing energy of virtual cache synonym lookup using
bloom filters,” in Proceedings of the International Confer-
ence on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2006.

[14] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M.
Pendleton, “An in-cache address translation mechanism,” in
Proceedings of the 13th Annual International Symposium on
Computer Architecture (ISCA), 1986.

[15] L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma:
Architectural and operating system support for reducing the
impact of address translation,” in Proceedings of the 24th
ACM International Conference on Supercomputing (ICS),
2010.

[16] H. Yoon and G. S. Sohi, “Revisiting virtual L1 caches:
A practical design using dynamic synonym remapping,” in
Proceedings of the IEEE 22nd International Symposium on
High Performance Computer Architecture (HPCA), 2016.

[17] E. J. Koldinger, J. S. Chase, and S. J. Eggers, “Architec-
ture support for single address space operating systems,” in
Proceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 1992.

[18] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” Tech. Rep., 2009.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic in-
strumentation,” in Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), 2005.

[20] M. Talluri and M. D. Hill, “Surpassing the TLB Performance
of Superpages with Less Operating System Support,” in
Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 1994.

[21] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accel-
erating two-dimensional page walks for virtualized systems,”
in Proceedings of the 13th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[22] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A
Full System Simulator for x86 CPUs,” in Proceedings of the
48th Design Automation Conference (DAC), 2011.

[23] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” Computer Archi-
tecture Letters, vol. 10, no. 1, pp. 16–19, Jan 2011.

[24] Intel R© 64 and IA-32 Architectures Optimization Reference
Manual, Intel, Jul. 2013.

[25] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,
C.-W. Tseng, and D. Yeung, “Biobench: A benchmark suite
of bioinformatics applications,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2005.

[26] Intel R© 64 and IA-32 Architectures Software Developer’s
Manual, Intel, Jun. 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT-CondensedLight
    /ACaslon-Italic
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AGOldFace-Outline
    /AharoniBold
    /Algerian
    /Americana
    /Americana-ExtraBold
    /AndaleMono
    /AndaleMonoIPA
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Anna
    /ArialAlternative
    /ArialAlternativeSymbol
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMT-Black
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /BakerSignet
    /BankGothicBT-Medium
    /Barmeno-Bold
    /Barmeno-ExtraBold
    /Barmeno-Medium
    /Barmeno-Regular
    /Baskerville
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /Baskerville-BoldItalic
    /Baskerville-Italic
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /Bellevue
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlingAntiqua-Bold
    /BerlingAntiqua-BoldItalic
    /BerlingAntiqua-Italic
    /BerlingAntiqua-Roman
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BiffoMT
    /BinnerD
    /BinnerGothic
    /BlackadderITC-Regular
    /Blackoak
    /blex
    /blsy
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolSeven
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /Botanical
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BradleyHandITC
    /Braggadocio
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScript
    /BrushScriptMT
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Carta
    /CaslonOpenfaceBT-Regular
    /Castellar
    /CastellarMT
    /Centaur
    /Centaur-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchL-Bold
    /CenturySchL-BoldItal
    /CenturySchL-Ital
    /CenturySchL-Roma
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Chiller-Regular
    /Cmb10
    /CMB10
    /Cmbsy10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /Cmbx10
    /CMBX10
    /Cmbx12
    /CMBX12
    /Cmbx5
    /CMBX5
    /Cmbx6
    /CMBX6
    /Cmbx7
    /CMBX7
    /Cmbx8
    /CMBX8
    /Cmbx9
    /CMBX9
    /Cmbxsl10
    /CMBXSL10
    /Cmbxti10
    /CMBXTI10
    /Cmcsc10
    /CMCSC10
    /Cmcsc8
    /CMCSC8
    /Cmcsc9
    /CMCSC9
    /Cmdunh10
    /CMDUNH10
    /Cmex10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /Cmff10
    /CMFF10
    /Cmfi10
    /CMFI10
    /Cmfib8
    /CMFIB8
    /Cminch
    /CMINCH
    /Cmitt10
    /CMITT10
    /Cmmi10
    /CMMI10
    /Cmmi12
    /CMMI12
    /Cmmi5
    /CMMI5
    /Cmmi6
    /CMMI6
    /Cmmi7
    /CMMI7
    /Cmmi8
    /CMMI8
    /Cmmi9
    /CMMI9
    /Cmmib10
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /Cmr10
    /CMR10
    /Cmr12
    /CMR12
    /Cmr17
    /CMR17
    /Cmr5
    /CMR5
    /Cmr6
    /CMR6
    /Cmr7
    /CMR7
    /Cmr8
    /CMR8
    /Cmr9
    /CMR9
    /Cmsl10
    /CMSL10
    /Cmsl12
    /CMSL12
    /Cmsl8
    /CMSL8
    /Cmsl9
    /CMSL9
    /Cmsltt10
    /CMSLTT10
    /Cmss10
    /CMSS10
    /Cmss12
    /CMSS12
    /Cmss17
    /CMSS17
    /Cmss8
    /CMSS8
    /Cmss9
    /CMSS9
    /Cmssbx10
    /CMSSBX10
    /Cmssdc10
    /CMSSDC10
    /Cmssi10
    /CMSSI10
    /Cmssi12
    /CMSSI12
    /Cmssi17
    /CMSSI17
    /Cmssi8
    /CMSSI8
    /Cmssi9
    /CMSSI9
    /Cmssq8
    /CMSSQ8
    /Cmssqi8
    /CMSSQI8
    /Cmsy10
    /CMSY10
    /Cmsy5
    /CMSY5
    /Cmsy6
    /CMSY6
    /Cmsy7
    /CMSY7
    /Cmsy8
    /CMSY8
    /Cmsy9
    /CMSY9
    /Cmtcsc10
    /CMTCSC10
    /Cmtex10
    /CMTEX10
    /Cmtex8
    /CMTEX8
    /Cmtex9
    /CMTEX9
    /Cmti10
    /CMTI10
    /Cmti12
    /CMTI12
    /Cmti7
    /CMTI7
    /Cmti8
    /CMTI8
    /Cmti9
    /CMTI9
    /Cmtt10
    /CMTT10
    /Cmtt12
    /CMTT12
    /Cmtt8
    /CMTT8
    /Cmtt9
    /CMTT9
    /Cmu10
    /CMU10
    /Cmvtt10
    /CMVTT10
    /ColonnaMT
    /Colossalis-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CourierX-Bold
    /CourierX-BoldOblique
    /CourierX-Oblique
    /CourierX-Regular
    /CreepyRegular
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /Dcb10
    /Dcbx10
    /Dcbxsl10
    /Dcbxti10
    /Dccsc10
    /Dcitt10
    /Dcr10
    /Desdemona
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dingbats
    /DomCasual
    /Dotum
    /DotumChe
    /DoulosSIL
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversGothicBT-Regular
    /EngraversMT
    /EraserDust
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErieBlackPSMT
    /ErieLightPSMT
    /EriePSMT
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /FelixTitlingMT
    /Fences
    /FencesPlain
    /FigaroMT
    /FixedMiriamTransparent
    /FootlightMTLight
    /Formata-Italic
    /Formata-Medium
    /Formata-MediumItalic
    /Formata-Regular
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothicITCbyBT-Book
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-Medium
    /FuturaBT-MediumItalic
    /Futura-Light
    /Futura-LightOblique
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Gautami
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /Giddyup
    /Giddyup-Thangs
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-CondensedBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /Gothic-Thirteen
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /GoudyTextMT-LombardicCapitals
    /GSIDefaultSymbols
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Fraction
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Humanist521BT-BoldCondensed
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-RomanCondensed
    /Imago-ExtraBold
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /Ironwood
    /ItcEras-Medium
    /ItcKabel-Bold
    /ItcKabel-Book
    /ItcKabel-Demi
    /ItcKabel-Medium
    /ItcKabel-Ultra
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /JoannaMT
    /JoannaMT-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kaufmann
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KidTYPEPaint
    /KinoMT
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /KrutiDev040Bold
    /KrutiDev040BoldItalic
    /KrutiDev040Condensed
    /KrutiDev040Italic
    /KrutiDev040Thin
    /KrutiDev040Wide
    /KrutiDev060
    /KrutiDev060Bold
    /KrutiDev060BoldItalic
    /KrutiDev060Condensed
    /KrutiDev060Italic
    /KrutiDev060Thin
    /KrutiDev060Wide
    /KrutiDev070
    /KrutiDev070Condensed
    /KrutiDev070Italic
    /KrutiDev070Thin
    /KrutiDev070Wide
    /KrutiDev080
    /KrutiDev080Condensed
    /KrutiDev080Italic
    /KrutiDev080Wide
    /KrutiDev090
    /KrutiDev090Bold
    /KrutiDev090BoldItalic
    /KrutiDev090Condensed
    /KrutiDev090Italic
    /KrutiDev090Thin
    /KrutiDev090Wide
    /KrutiDev100
    /KrutiDev100Bold
    /KrutiDev100BoldItalic
    /KrutiDev100Condensed
    /KrutiDev100Italic
    /KrutiDev100Thin
    /KrutiDev100Wide
    /KrutiDev120
    /KrutiDev120Condensed
    /KrutiDev120Thin
    /KrutiDev120Wide
    /KrutiDev130
    /KrutiDev130Condensed
    /KrutiDev130Thin
    /KrutiDev130Wide
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldOblique
    /LetterGothic-BoldSlanted
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Slanted
    /LevenimMT
    /LevenimMTBold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /Lithos-Black
    /Lithos-Regular
    /LotusWPBox-Roman
    /LotusWPIcon-Roman
    /LotusWPIntA-Roman
    /LotusWPIntB-Roman
    /LotusWPType-Roman
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Lydian
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /Map-Symbols
    /MathA
    /MathB
    /MathC
    /Mathematica1
    /Mathematica1-Bold
    /Mathematica1Mono
    /Mathematica1Mono-Bold
    /Mathematica2
    /Mathematica2-Bold
    /Mathematica2Mono
    /Mathematica2Mono-Bold
    /Mathematica3
    /Mathematica3-Bold
    /Mathematica3Mono
    /Mathematica3Mono-Bold
    /Mathematica4
    /Mathematica4-Bold
    /Mathematica4Mono
    /Mathematica4Mono-Bold
    /Mathematica5
    /Mathematica5-Bold
    /Mathematica5Mono
    /Mathematica5Mono-Bold
    /Mathematica6
    /Mathematica6Bold
    /Mathematica6Mono
    /Mathematica6MonoBold
    /Mathematica7
    /Mathematica7Bold
    /Mathematica7Mono
    /Mathematica7MonoBold
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /Mesquite
    /Mezz-Black
    /Mezz-Regular
    /MICR
    /MicrosoftSansSerif
    /MingLiU
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-Ornaments
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MonotypeSorts
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MS-Gothic
    /MSHei
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MSSong
    /MS-UIGothic
    /MT-Extra
    /MTExtraTiger
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-Italic
    /Myriad-Roman
    /Narkisim
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewMilleniumSchlbk-BoldItalicSH
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Italic
    /NewsGothicBT-Roman
    /NewsGothic-Condensed
    /NewsGothic-Italic
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NimbusMonL-Bold
    /NimbusMonL-BoldObli
    /NimbusMonL-Regu
    /NimbusMonL-ReguObli
    /NimbusRomNo9L-Medi
    /NimbusRomNo9L-MediItal
    /NimbusRomNo9L-Regu
    /NimbusRomNo9L-ReguItal
    /NimbusSanL-Bold
    /NimbusSanL-BoldCond
    /NimbusSanL-BoldCondItal
    /NimbusSanL-BoldItal
    /NimbusSanL-Regu
    /NimbusSanL-ReguCond
    /NimbusSanL-ReguCondItal
    /NimbusSanL-ReguItal
    /Nimrod
    /Nimrod-Bold
    /Nimrod-BoldItalic
    /Nimrod-Italic
    /NSimSun
    /Nueva-BoldExtended
    /Nueva-BoldExtendedItalic
    /Nueva-Italic
    /Nueva-Roman
    /NuptialScript
    /OCRA
    /OCRA-Alternate
    /OCRAExtended
    /OCRB
    /OCRB-Alternate
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OzHandicraftBT-Roman
    /PalaceScriptMT
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /PapyrusPlain
    /Papyrus-Regular
    /Parchment-Regular
    /Parisian
    /ParkAvenue
    /Penumbra-SemiboldFlare
    /Penumbra-SemiboldSans
    /Penumbra-SemiboldSerif
    /PepitaMT
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PhotinaCasualBlack
    /Playbill
    /PMingLiU
    /Poetica-SuppOrnaments
    /PoorRichard-Regular
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /PrestigeElite
    /Pristina-Regular
    /PTBarnumBT-Regular
    /Raavi
    /RageItalic
    /Ravie
    /RefSpecialty
    /Ribbon131BT-Bold
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /Rod
    /RodTransparent
    /RunicMT-Condensed
    /Sanvito-Light
    /Sanvito-Roman
    /ScriptC
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /Serpentine-BoldOblique
    /ShelleyVolanteBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SILDoulosIPA
    /SimHei
    /SimSun
    /SimSun-PUA
    /SnapITC-Regular
    /StandardSymL
    /Stencil
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /Stop
    /Swiss721BT-BlackExtended
    /Sylfaen
    /Symbol
    /SymbolMT
    /SymbolTiger
    /SymbolTigerExpert
    /Tahoma
    /Tahoma-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /TechnicalItalic
    /TechnicalPlain
    /Tekton
    /Tekton-Bold
    /TektonMM
    /Tempo-HeavyCondensed
    /Tempo-HeavyCondensedItalic
    /TempusSansITC
    /Tiger
    /TigerExpert
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldItalicOsF
    /Times-BoldSC
    /Times-ExtraBold
    /Times-Italic
    /Times-ItalicOsF
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Times-RomanSC
    /Trajan-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-CondensedMedium
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-Medium
    /Univers-MediumItalic
    /URWBookmanL-DemiBold
    /URWBookmanL-DemiBoldItal
    /URWBookmanL-Ligh
    /URWBookmanL-LighItal
    /URWChanceryL-MediItal
    /URWGothicL-Book
    /URWGothicL-BookObli
    /URWGothicL-Demi
    /URWGothicL-DemiObli
    /URWPalladioL-Bold
    /URWPalladioL-BoldItal
    /URWPalladioL-Ital
    /URWPalladioL-Roma
    /USPSBarCode
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /VinerHandITC
    /Viva-BoldExtraExtended
    /Vivaldii
    /Viva-LightCondensed
    /Viva-Regular
    /VladimirScript
    /Vrinda
    /Webdings
    /Westminster
    /Willow
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /XYATIP10
    /XYBSQL10
    /XYBTIP10
    /XYCIRC10
    /XYCMAT10
    /XYCMBT10
    /XYDASH10
    /XYEUAT10
    /XYEUBT10
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


