
Perforated Page: Supporting Fragmented 
Memory Allocation for Large Pages

Chang Hyun Park, Sanghoon Cha, Bokyeong Kim,
Youngjin Kwon, David Black-Schaffer, and Jaehyuk Huh



Benefits and Challenges of Large Pages

2

Performance Difficult to make Overheads



Large Pages for Performance
• 2MB large page à 512x TLB coverage
• 2MB large page à ~68% faster execution [1]

3

Virtual Address

Large 
page

Physical Address

Large 
page

[1] Margaritov et al., MICRO ‘19



Large Pages are Difficult to Make

• Contiguous: 512 4KB pages

• Aligned: 2MB boundary

• Homogeneous: permissions

4

4KB

✓
Virtual Pages Physical Pages

Large 
page

Large 
page

r/w
r/w
r/w
r/o

4KB



• Memory compaction to create large pages
• Compaction takes up to 35% of time [1]

• Immovable pages prevent compaction
• E.g., kernel allocations, I/O buffers, etc.
• After Linux kernel build, 50% of 2MB regions had immovable pages 

CompactedFragmented

Overheads: Compaction

5[1] Parwar et al. ASPLOS ‘18
Immovable pages Not-compactable

Used page
Free page
Immovable page

✓
Physical Addresses



Overheads: Memory Bloating
• Sparse access/use in large pages à wasted physical space

• Redis with large pages (4M keys, 16KB values) 
• 20% more memory consumption (78GB à 93GB)
• 45% fewer TLB misses (1.8 MPKI à 1.1 MPKI)

6

Memory Allocation

Actually used
pages

Regular page

Large 
page

Large page



Summary

7

Large pages for 
Performance

Large pages are 
Difficult to make

Large pages come 
with Overheads

• Better TLB Coverage à Better Performance

• Require contiguous regions
• Require homogeneous permissions

• Costly compacting to create contiguous regions
• Immovable pages common
• Memory bloating due to sparse access



Summary

8

Large pages for 
Performance

Large pages are 
Difficult to make

Large pages come 
with Overheads

• Better TLB Coverage à Better Performance

• Require contiguous regions
• Require homogeneous permissions

• Costly compacting to create contiguous regions
• Immovable pages common
• Memory bloating due to sparse access

Can we get the benefits of large pages 
without the difficulties and overheads?



Perforated Pages
• Perforated pages for majority of 2MB region

• Hole pages for flexible fine-grained mappings

9

Virtual Pages Physical Pages

Hole Hole
Perforated page 

translation



Perforated Pages
• Perforated pages for majority of 2MB region

• Hole pages for flexible fine-grained mappings

10

Virtual Pages Physical Pages

Hole Hole
Hole page 
translation



Perforated Pages
• Large pages with holes

• Efficient translation for most of the page
• Relaxed contiguity constraint where needed
• Relaxed permission constraint where needed

• Tolerate immovable pages
• Overcome by re-mapping holes
• 50% of 2MB + 50% of perforated pages

• Avoid bloating
• Conserve untouched pages via holes
• 0% bloating, 17% TLB MPKI reduction (2MB: 45% TLB MPKI reduction)

Virtual Pages Physical Pages

r/w
r/w
r/w
r/-

r/w
r/o

11



Perforated
Page

How it works
Virtual Address

4KB

Hole

Large 
page

Large 
page

Physical Address

Hole

12



Page Tables

How it works: Basics
Virtual Address

Perforated
Page

4KB

Large 
page

Hole

Physical Address

Large 
page

Hole

L2

P

L1

Hole Bitmap
0000 0000 0100

How to distinguish holes/perforated page?

Per-page bitmap to mark holes
0.003% capacity overhead

Not hole!

13



Page Tables

Shadow L2

How it works: Basics
Virtual Address

4KB

Large 
page

Hole

Physical Address

Large 
page

Hole

L2

P

L1

L1

Hole Bitmap
0000 0000 0100
Hole!

Where do we keep addresses for Hole pages?

Shadow L2 and Regular L1 Page Table!
14



Page Tables

Shadow L2

How it works: Summary
Virtual Address

4KB

Large 
page

Hole

Physical Address

Large 
page

Hole

L2

P

L1

L1

Hole Bitmap
0000 0000 0100
Hole!

Not hole!

Additional accesses Hole bitmap Shadow L2

Perforated page walk ✓
Hole page walk ✓ ✓

Coverage

Large page 512x

Perforated page (512 - # holes)x

Regular page 1x

Hole page 1x
15



Shadow L2

How it works: Optimization
1. Coarse grain bitmap filter
• Skip bitmap if definitely not hole

2. Hole bitmaps cached in TLB
• 16 TLB entries per perforated page
• Only insert accessed bitmap entries

3. Shadow L2 entries cached in 
Page table walker cache

L2 Page table

P

Hole Bitmap
0000 0000 0100
Hole!

1

0

Not hole!

P 10

Bitmap Filter

Hole
0
1
0
0

Skip bitmap access!

16



Intel-like
TLB

Evaluation Methodology
• Simulation configuration
• Gem5
• System-call emulation mode

• Microbenchmark
• Random access (worst case)

• Real world benchmarks
• SPECCPU
• Biobench

17

Component Configuration

Processor 2GHz, OoO x86

Caches 32KB L1 I/D
2MB L2

Memory DDR4-2400, 4 channels

L1 TLB 64-entry, 4-way, 4KB
32-entry, 4-way, 2MB

L2 TLB 1,536-entry, 12 way 
(Shared by 4KB and 2MB)

Page Structure 
Cache

4-entry L3 cache entries
24-entry L2 cache entries



Microbenchmark

18

0 10 25 50 75 90 100
3ortion oI IragPented 20% page blocNs (%)

100

150

200

250

300

350

1
or

P
al

iz
ed

 I3
C 

(%
)

%aseline 4K% %aseline 20%+4K% 3erIorated 25% Koles

0 10 25 50 75 90 100
3ortion oI IragPented 20% page blocNs (%)

100

150

200

250

300

350

1
or

P
al

iz
ed

 I3
C 

(%
)

%aseline 4K% %aseline 20%+4K% 3erIorated 25% Koles

0 10 25 50 75 90 100
3ortion oI IragPented 20% page blocNs (%)

100

150

200

250

300

350

1
or

P
al

iz
ed

 I3
C 

(%
)

%aseline 4K% %aseline 20%+4K% 3erIorated 25% Koles

0 10 25 50 75 90 100
0

25
50
75

100
%aseline 20%+4K%

0 10 25 50 75 90 100
)ragPented 20% page EloFks (%)

0
25
50
75

100
Perforated 25% Koles

(n
tr

y 
ty

pe
s 

(%
)

(n
tr

y 
ty

pe
s 

(%
)

perforated pages
20%

regular/Kole 4K%
Kole EitPaps

Breakdown of entries in L2 TLB

All Large pages No Large pages

Large pages can’t 
be created with 
fragmentation

Perforated pages 
provide most of the 
Large page benefits

L2 TLB is filled with 
hole bitmaps

+59%



Benchmarks

19

0 10 25 50 75 90 100

100

102

104

106

108

110
PcI

0 10 25 50 75 90 100

100

105

110

115

120
oPnetpp

0 10 25 50 75 90 100

100

105

110

115

120
PuPPer

0 10 25 50 75 90 100

100

110

120

130

140
tiger

0 10 25 50 75 90 100

100

105

110

115

120

125

130
libquantuP

0 10 25 50 75 90 100

100

102

104

106

108

110
zeusPp

0 10 25 50 75 90 100

100

102

104

106

108

110
xz

0 10 25 50 75 90 100

100

105

110

115

120
oPnetpp17

3ortion oI IragPented 20% blocNs (%)

1
or

P
al

iz
ed

 I3
C 

(%
)

%aseline 20%+4K% 3erIorated 25% Koles

2% - 11% performance improvement over Large page TLB
93% - 99% performance of ideal 2MB mapping (x=0)



More in the paper
• Details of TLB
• OS issues:

• Advise for OS
• TLB Shootdowns

• Virtualization Support
• More evaluation:

• More hole % scenarios
• Dispersed holes scenario
• Virtualization
• Comparison to prior work

• And more…

20



Conclusion
• Large pages deliver performance, but has challenges:
• Contiguous, homogenous
• Compaction, bloating
• Immovable pages

• Perforated page provides flexible large page
• Large-page translations for most of the data
• Holes to handle pages that differ

• Minimal changes to existing translation HW and data structure
• Performance similar to ideal large page mappings
• Retains 93-99% of performance

21



Perforated Page: Supporting Fragmented 
Memory Allocation for Large Pages

Chang Hyun Park, Sanghoon Cha, Bokyeong Kim,
Youngjin Kwon, David Black-Schaffer, and Jaehyuk Huh


